

Point Source CallLisa Unger2016-02-22Uppsale University

FB analysis wiki page

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner e

Reminder

Fermi Bubbles

Shaped maximum likelihood analysis

Galactic Center

- Events distributed within 0.5 degrees radius around the Galactic Center
- Same procedure as for FB
- HE plots are on the wiki page
- GC PDFs differ significantly from the FB PDFs
- Comments from Spencer:

- GC analysis could be more sensitive to correctly knowing the cascade point spread function (PSF).

 \rightarrow The PSF is convoluted in the analysis. Due to the large angular resolution it is not possible to know it more correctly.

- Analysis might not be as optimal for GC (point soure) as for FB (extended)

 \rightarrow It is a likelihood analysis based on position on the sky (healpy bins), therefore it is more general. It can be applied to all shapes, even a point source.

 Neutrino flux has been derived from gamma-ray flux by assumption of a power law.

How much does the assumption of a log parabola affect the result?

 \rightarrow The used likelihood takes only the position of the events into account, therefore it is model independent

→ The sensitivity is affected because the expected events are derived using a flux expectation (see slide below)

 \rightarrow In the region of interest the difference is insignificant

Sensitivity comparison

Question from Allan: improvement of sensitivity with energy cut?

Low energy sample GENIE

Correlation plots for LE with cut at 195 GeV

Some events have been reconstructed to very high energies > 2TeV.

Question from Allan: improvement of sensitivity with energy cut?

Correlation plots for HE with cut at 195 GeV

Sensitivity

- Assuming the same PDFs events with energy > 195 GeV have been cut away
- Lost events

LE: 143 of 5905 ~ 0.02% HE: 1058 of 2184 ~ 48%

 For HE this procedure can not be applied without according PDFs

- Total amount of events (without double counting): 7426
- Overlapping events: 663

We wish to unblind this analysis for the Fermi Bubbles and the Galactic center and to view the un-scrambled reconstructed directions for the IC86-2011 dataset for the merged low- and high-energy cascade event selection.

After unblinding, the best fit and median upper limits for the number of signal events at 90% Confidence level will be calculated using the maximum likelihood method.

Summary

- Comparison of results with GC signal Power law flux assumption energy cut of 195 GeV combination of LE & HE
- TODO:

GC analysis with merged samples

Correct application of the energy cut for merged sample

More information can be found on my FB analysis wiki page

Analysis Method

- Shaped Maximum Likelihood Analysis
- Similar to the <u>IC79 Low Energy Galactic Center Analysis</u> (Samuel Flis, Martin Wolf)
- Likelihood will be calculated using <u>ML Sandbox</u> (Samuel Flis)

$$\begin{aligned} \mathcal{L}(b) &= \prod_{i=1}^{n_{obs}} f(b_i | \mu) \\ \text{healpy bins} & \text{signal events} \\ f(b|\mu) &= \frac{\mu}{n_{obs}} f_S(b) + \left(1 - \frac{\mu}{n_{obs}}\right) f_B(b|\mu) \\ \text{signal PDF} & \text{background PDF} \\ f_B(b|\mu) &= \frac{\mu}{n_{obs}} f_{ss}(b) + \left(1 - \frac{\mu}{n_{obs}}\right) f_{sd}(b|\mu) \\ \text{scrambled signal PDF} & \text{scrambled data PDF} \end{aligned}$$

Probability Density Functions

LE sample:

HE sample:

lisa.unger@physics.uu.se

Point Source Call 2016-02-22

Expected events - genie

 $N_{Events} = T_{live} \cdot \sum \frac{OneWeight}{nFiles \cdot nEvents} \cdot \frac{\Phi_{\nu}(E,\Omega)}{dE \ d\Omega}$

livetime: 329.1 days

LE stream

- Nue : ~ 0.6 events / livetime
- Numu: ~ 0.3 events / livetime
- Nutau: ~ 0.3 events / livetime
- Nu: ~ 1.2 events / livetime

HE stream

- ~ 0.5 events / livetime
- ~ 0.1 events / livetime
- ~ 0.2 events / livetime
- ~ 0.8 events / livetime

$[\Phi_{\nu}] = \frac{1}{GeV \ cm^2 \ s \ sr}$

$[OneWeight] = GeV \ cm^2 \ sr$

lisa.unger@physics.uu.se

Point Source Call 2016-02-22

17