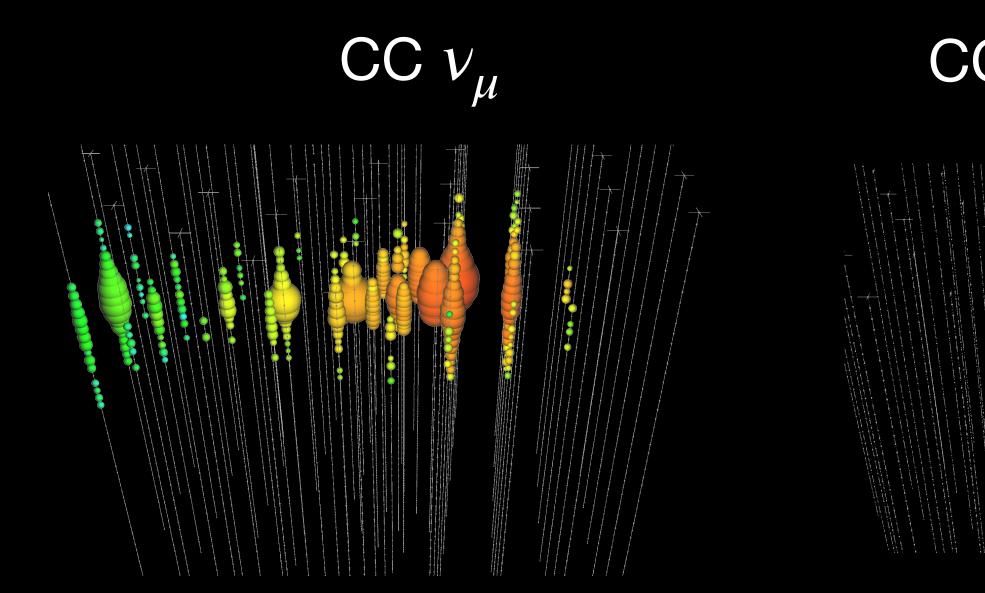
Machine Learning in IceCube Landscape of emerging developments

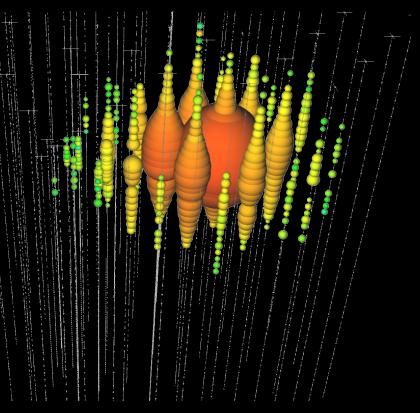
SCAP 2021, Claudio Kopper - Heavily borrowed (with permission) from M. Huennefeld's NPML presentation

Event Topologies



 $\nu_{\mu} + N \rightarrow \mu + X$

Track



$$N \rightarrow e + X$$

 $N \rightarrow v_* + X$
Cascade

 $CC v_{\tau}$

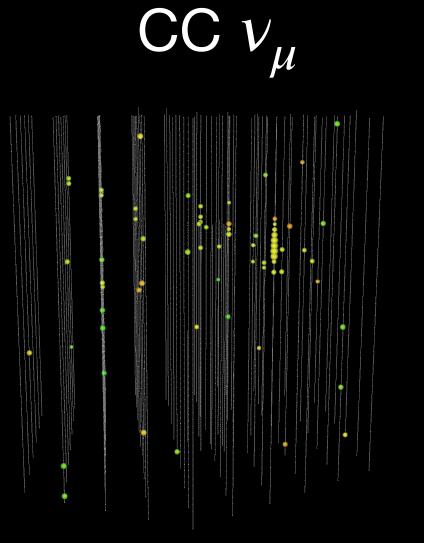
 $\nu_{\tau} + N \to \tau + X$

Cascade / Track / Double-Cascade

 $v_e +$

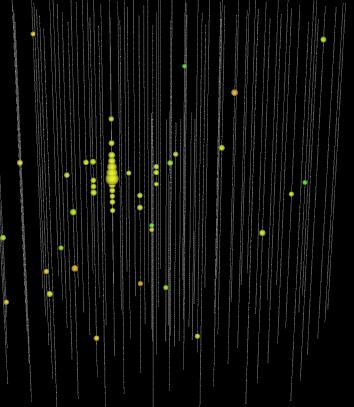
 $v_* +$

Event Topologies



 $\nu_{\mu} + N \rightarrow \mu + X$

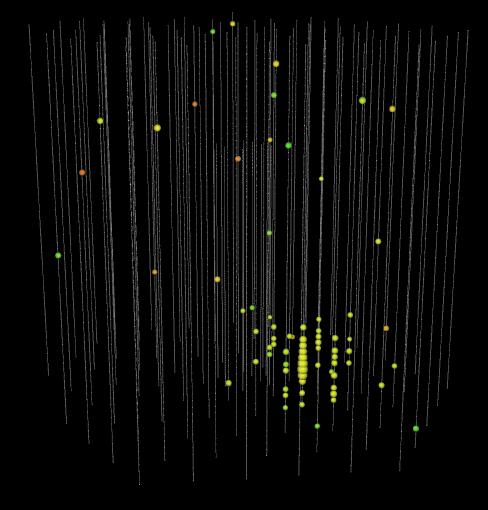
Track



$$N \rightarrow e + X$$

 $N \rightarrow v_* + X$
Cascade

 $\operatorname{CC} v_{\tau}$



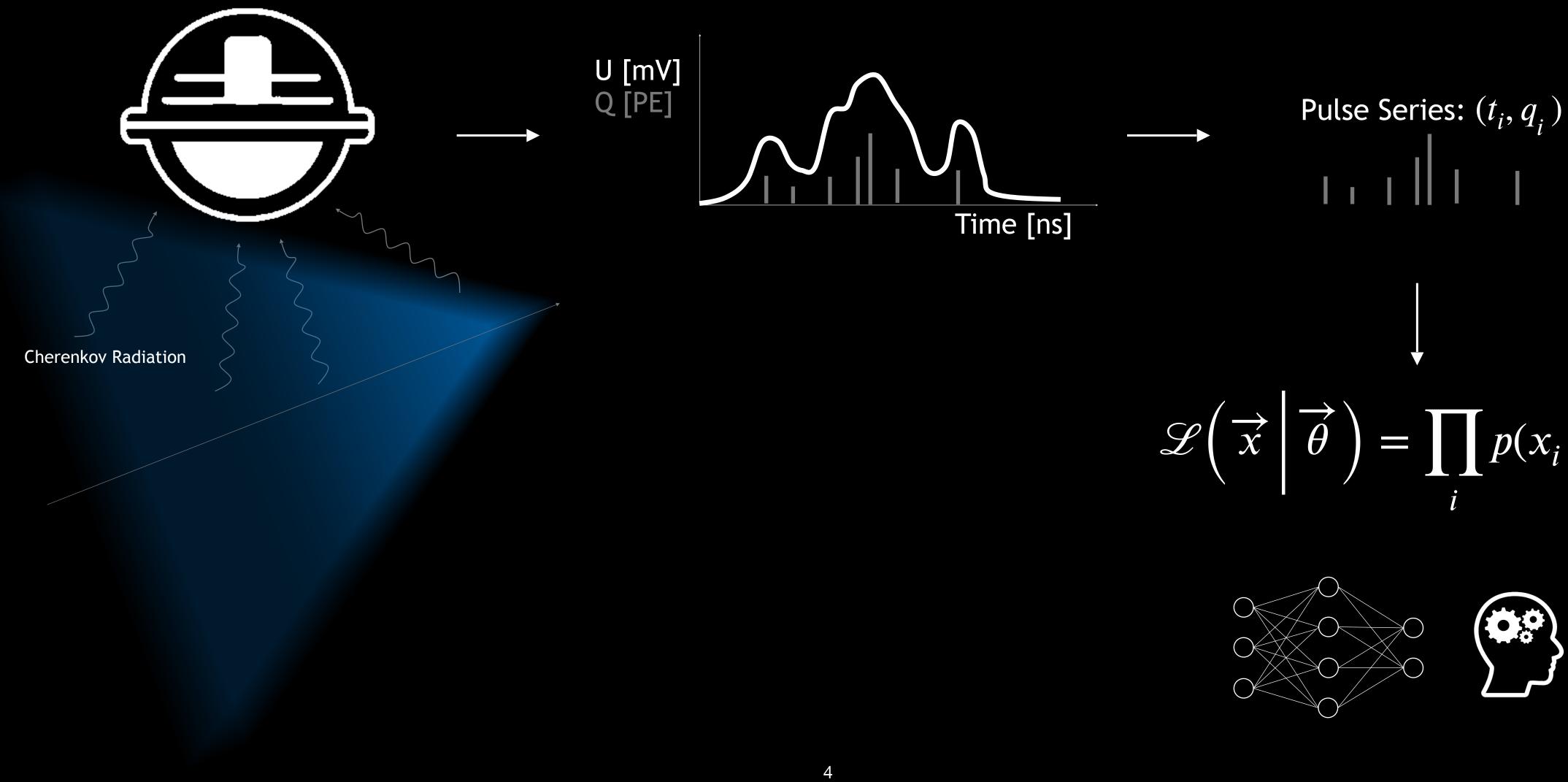
 $\nu_{\tau} + N \to \tau + X$

Cascade / Track / Double-Cascade

 $v_e +$

 $\nu_* +$

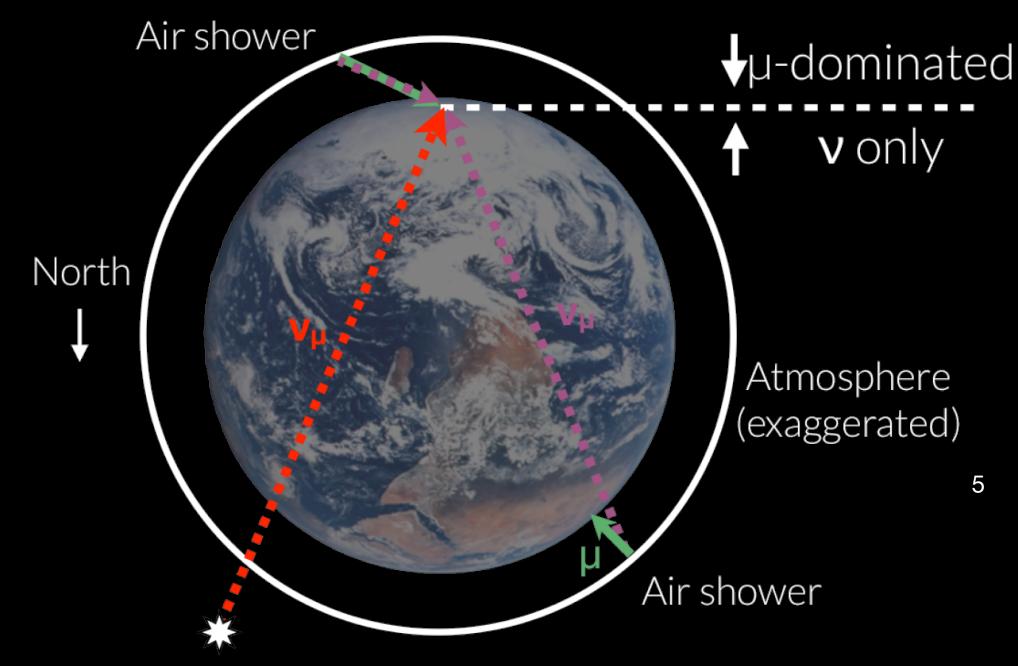
Event Reconstruction



$\mathscr{L}\left(\overrightarrow{x} \mid \overrightarrow{\theta}\right) = \prod_{i} p(x_i \mid \overrightarrow{\theta})$

Main Reconstruction Tasks

Event Selection and Classification



5

Astrophysical source

Rates:

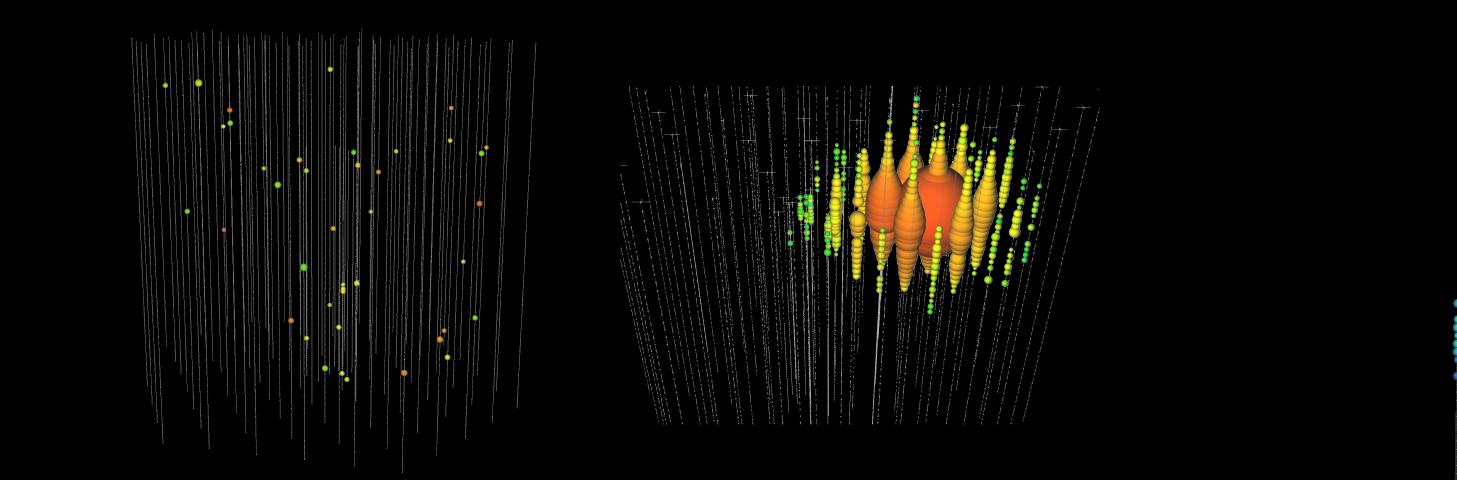
Atmospheric Muons: $\sim 10^3$ Hz Atmospheric Neutrinos: ~ 10^{-3} Hz Astrophysical Neutrinos: ~ 10^{-7} Hz

Estimation of Event Parameters heta, ϕ , E, $ec{x}$... **Uncertainty Estimation** $x = -83.99^{+1.5}$ * ** ** ** ** **

Challenges and Potential for ML

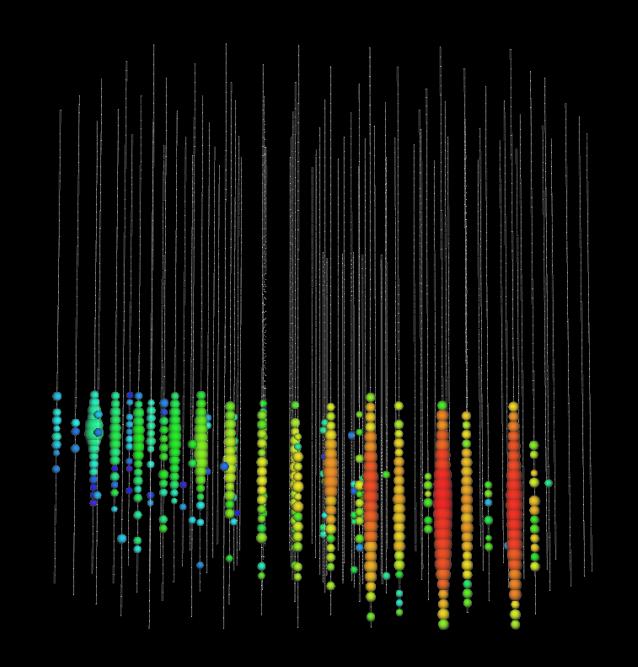
Challenges for traditional reconstruction methods

- High-dimensionality and complexity of data
- Defining problem/likelihood can be difficult
- Computation of likelihood can be intractable
- Energy spans over many orders of magnitude
- Time constraints on event reconstruction



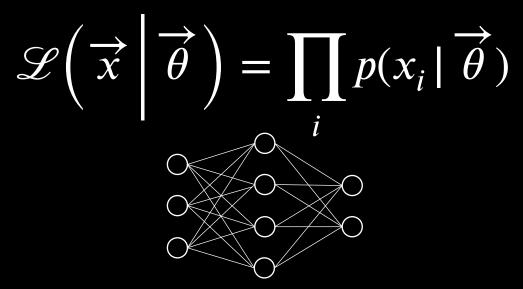
Potential for machine and deep learning

- Can handle raw and complex data
- Problems can easily be defined: setting up likelihood function is not necessary
- Inference is typically extremely fast: will enhance real-time alerts and follow-ups



ML Applications "Classical" ML

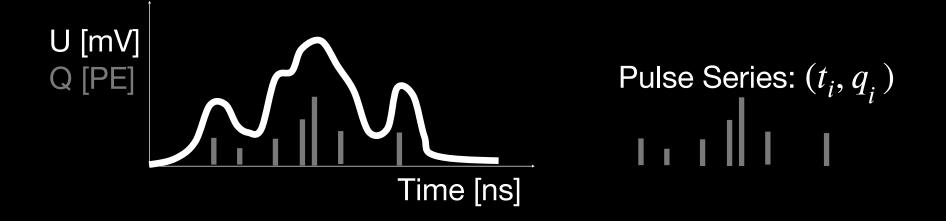
High-level and low-dimensional input data:



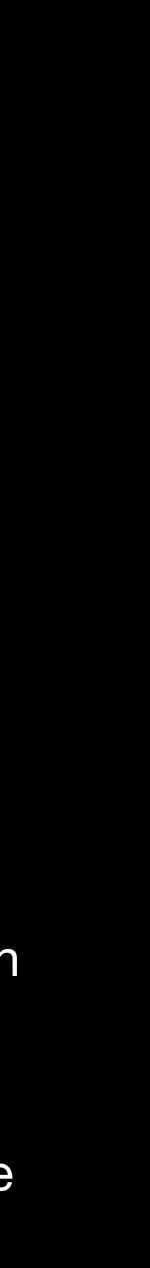
- Input features rely on previous reconstructions or summary statistics of pulses
- Mainly used in classification tasks, but also in development of analysis methodology and in regression tasks

Deep Learning

• Raw and high-dimensional input data:



- Input data typically does not rely on previous reconstructions
- Mainly used in classification and regression tasks
- Often applied very early on in the processing chain due to fast inference time

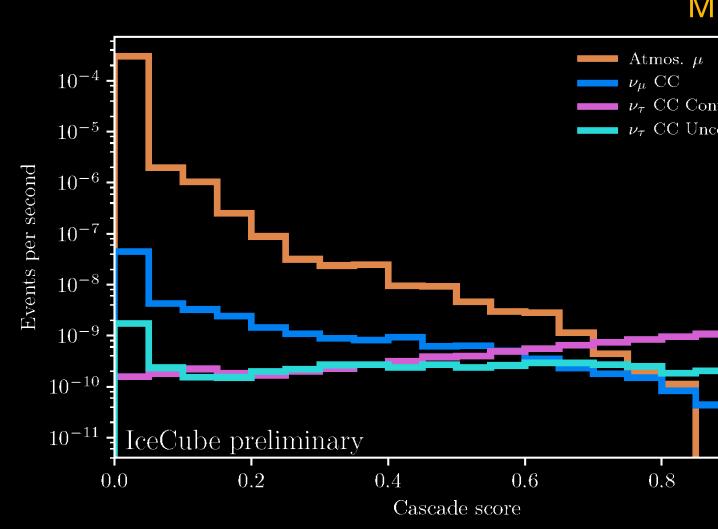


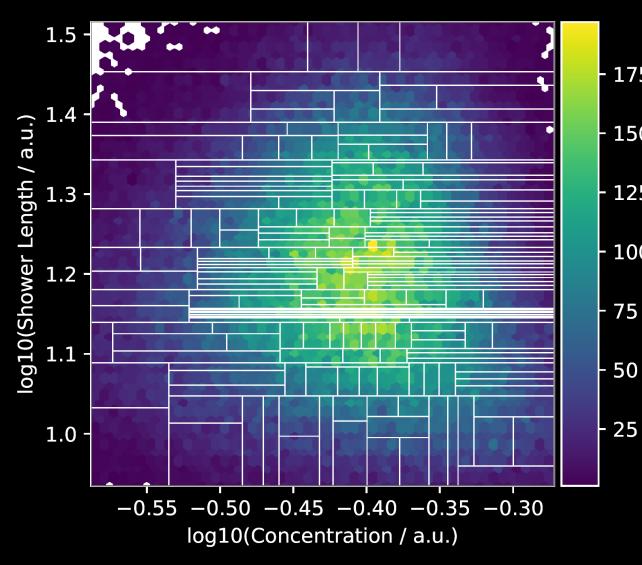
Examples (Note: almost all new reconstruction d

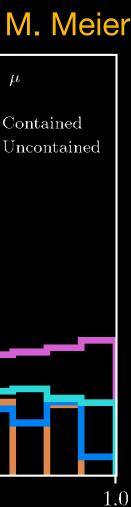
(Note: almost all new reconstruction development is done using Machine Learning)

"Classical" Machine Learning

- **Classification (and some regression) tasks:** ullet
 - Background suppression, topology classification, energy and uncertainty estimation
 - Tree-based learners, shallow NNs, ...
 - Widely adopted and core component of most IceCube analyses
- Analysis methodology:
 - Description of PDFs used in analyses (via KDEs for example)
 - Decision tree binning (Use decision tree to bin high-dimensional parameter space)
 - Iterative unfolding methods with an ML classifier as core component







Deep Learning in IceCube

- What data representation to use?
 - Tradeoff between curse of dimensionality and information loss
 - Does representation reflect symmetries in data?
- What type of NN architecture to use?
 - Is the architecture suited to the data?
 - Can the architecture exploit symmetries in data?
- How to exploit domain knowledge?
 - Neutrino interactions are invariant under translation in space and time as well as rotation in space
 - Dust impurities, physics laws, …

• Goal:

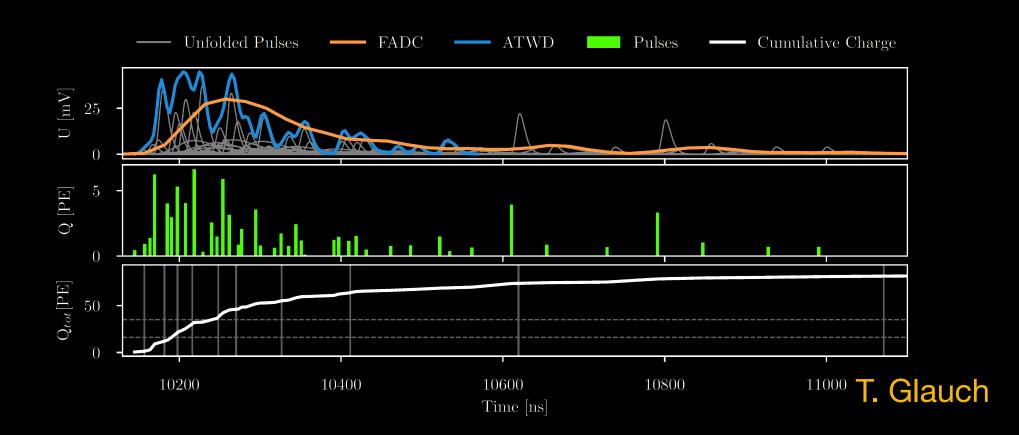
 Find NN architecture suitable for data format that is capable of exploiting symmetries and domain knowledge

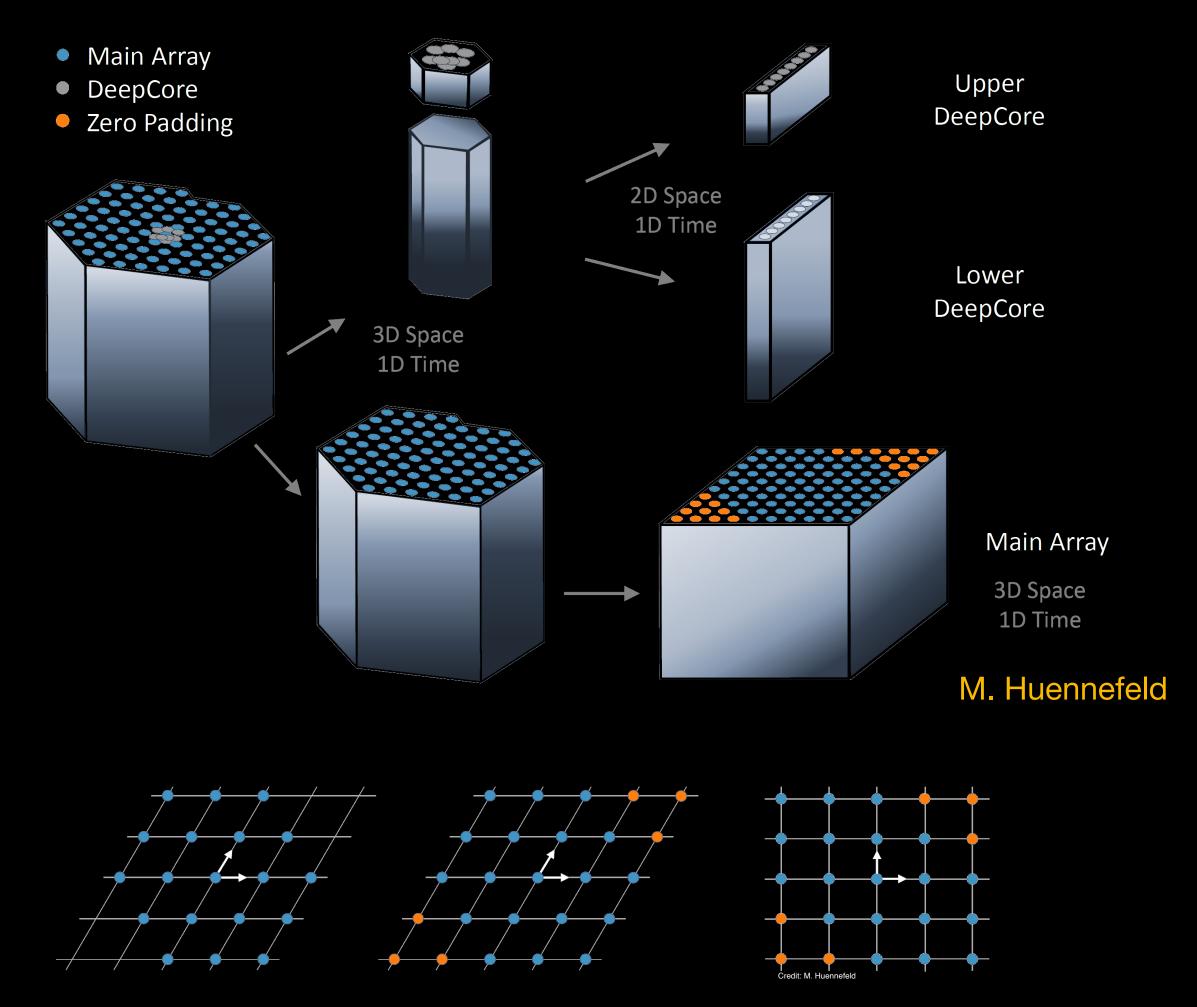
Architectures Investigated:

- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Graph Neural Network (GNN)
- Hybrid Maximum-Likelihood Estimation (MLE) / Deep Learning (DL) approaches

Convolutional Neural Networks (CNN)

- Require constant and uniform input:
 - Use summary statistics on pulses
- IceCube's geometry needs special handling:
 - Low-energy reconstructions reduce input to DeepCore strings
 - High-energy typically split up detector parts or only use main array





Hexagonal Convolution Kernels

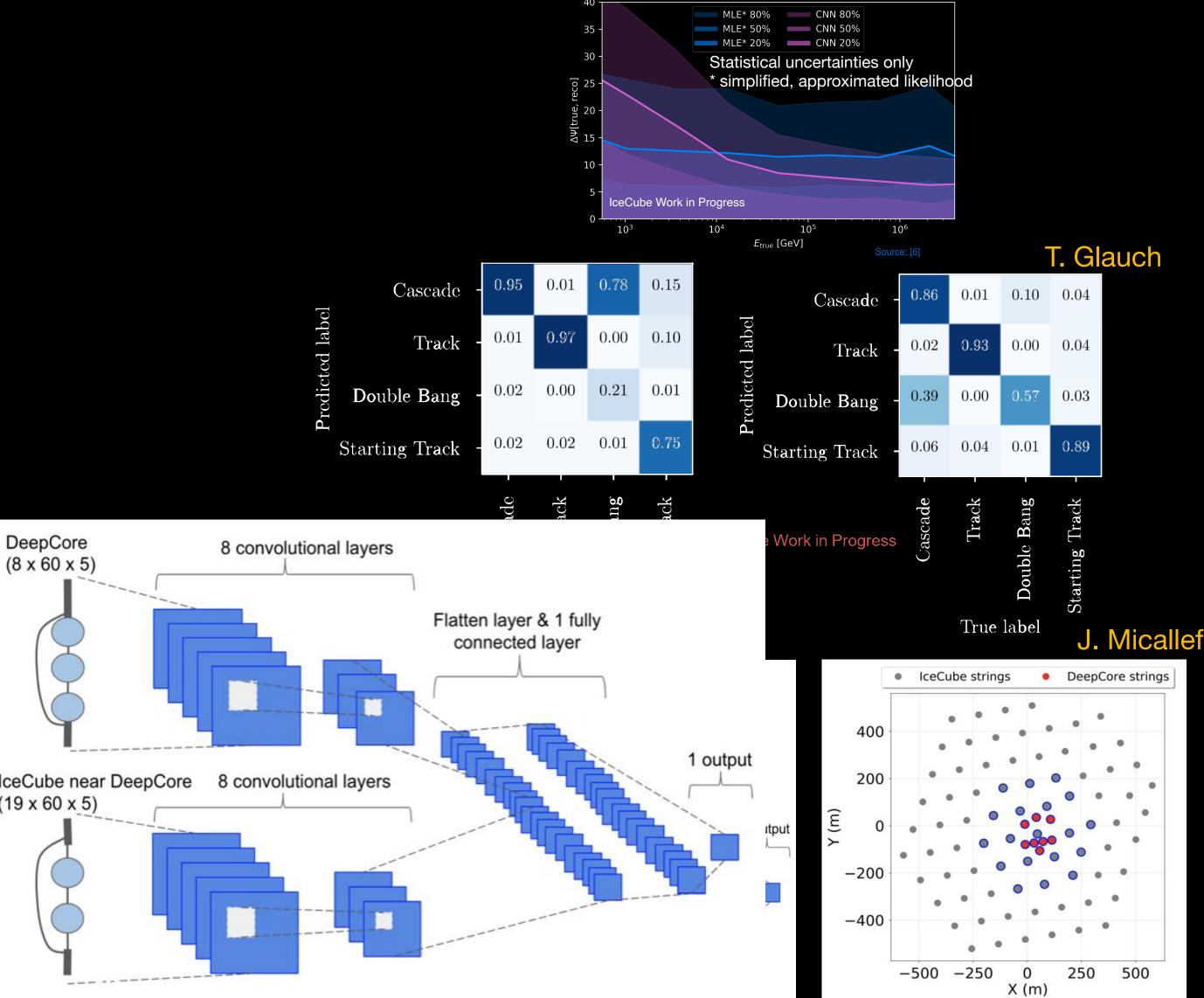
Convolutional Neural Networks (CNN)

- Speed up reconstruction by orders of magnitude
- Can improve accuracy in comparison to traditional methods
- Uncertainty estimation via Gaussian likelihood as loss
- Many different approaches for various tasks
 - CNN event reconstruction
 - CNN event topology classification
 - CNNs focused on low-energy events

• Pros/Cons:

- Exploit (approximate) translational invariance in data
- **CNN assumes symmetric grid**
- Cannot naturally account for inhomogeneities in mediu
- Loss of information due to summary statistics
- Inclusion of additional domain knowledge is difficult

M. Huennefeld



Recurrent Neural Networks (RNN)

- RNN can handle arbitrary input length, 2 main approaches:
 - RNN over pulses (\vec{x}_i, q_i, t_i)
 - RNN over event "snapshots" in time (CNN over spatial dimension in each time step)
- Pros/Cons:

Time domain and sequential data is naturally handled

Inclusion of additional domain knowledge is difficult

RNN over pulses (\vec{x}_i, q_i, t_i) :

 Can handle inhomogeneities in detector grid and detector medium

(Approximate) translational invariance in data not used

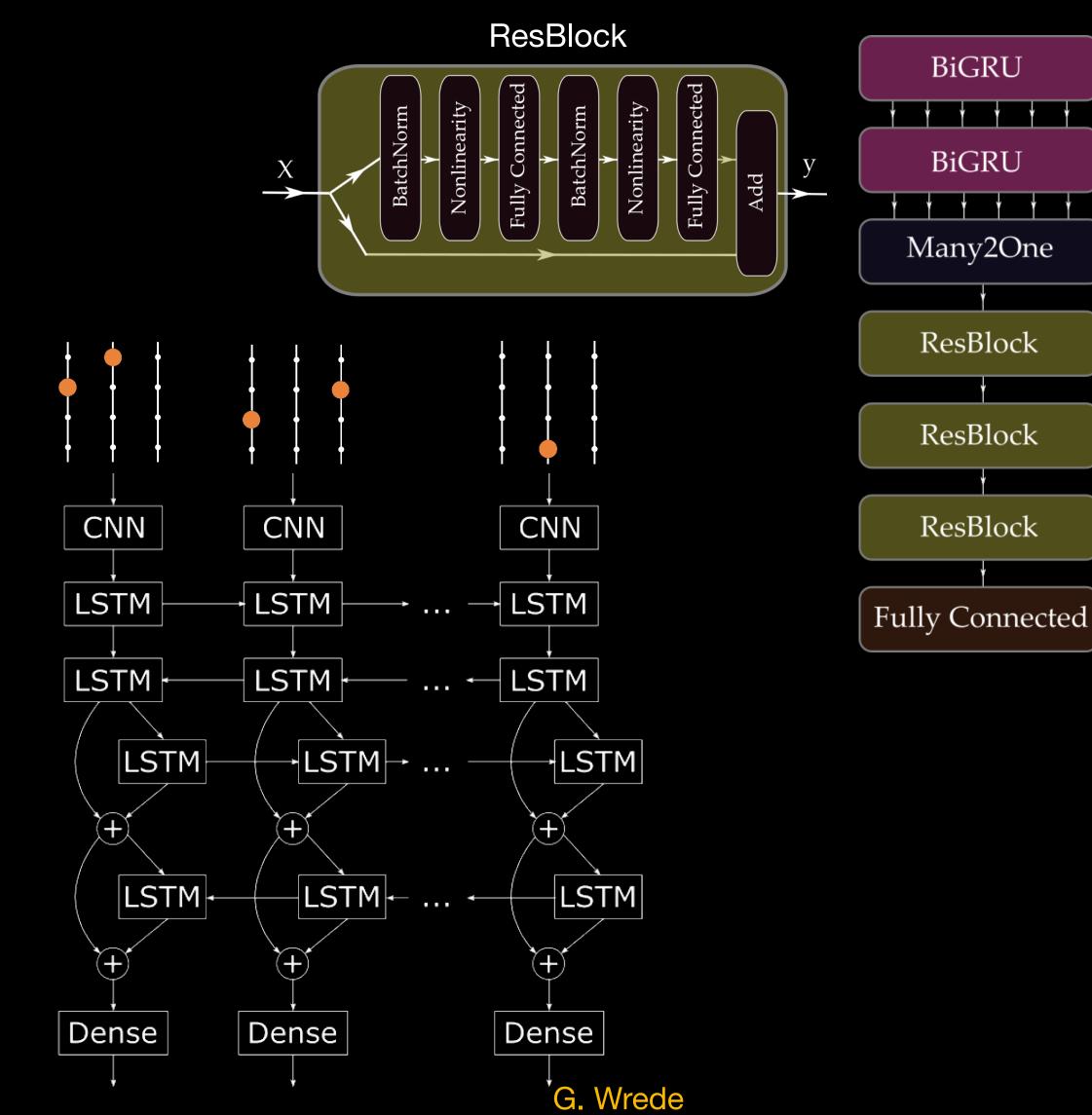
Required run-time scales poorly with increased energy

RNN over event "snapshots" in time (RNN + CNN):

Exploits (approximate) translational invariance in data

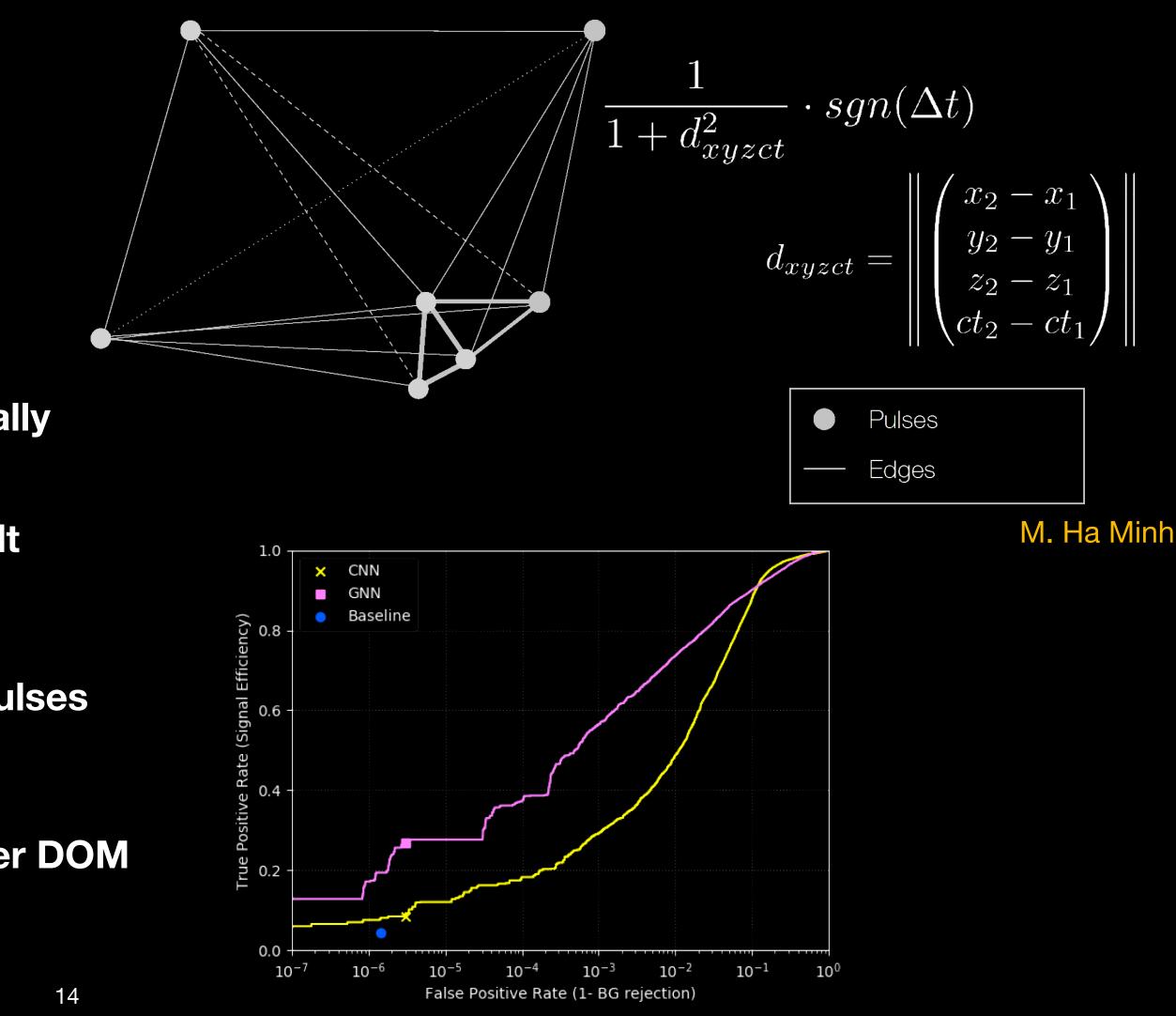
Cannot naturally account for inhomogeneities in detector medium

Loss of information due to binning



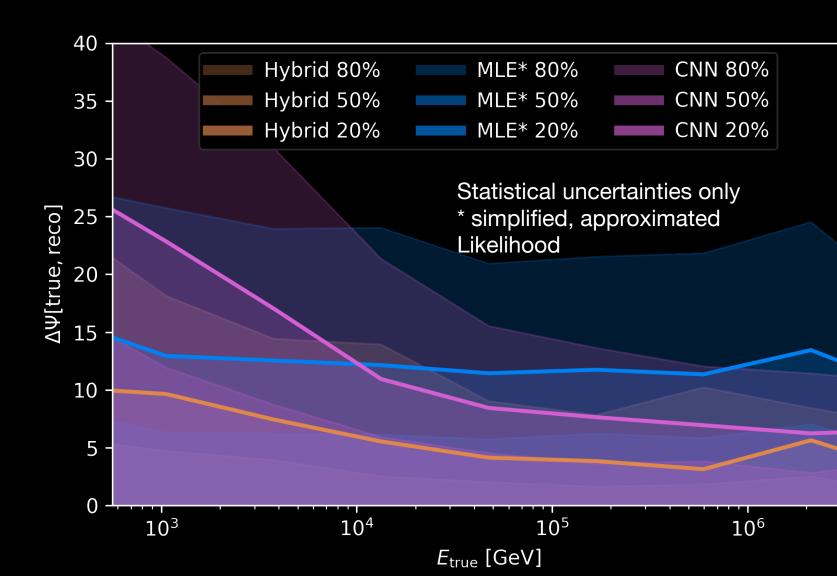
Graph Neural Network (GNN)

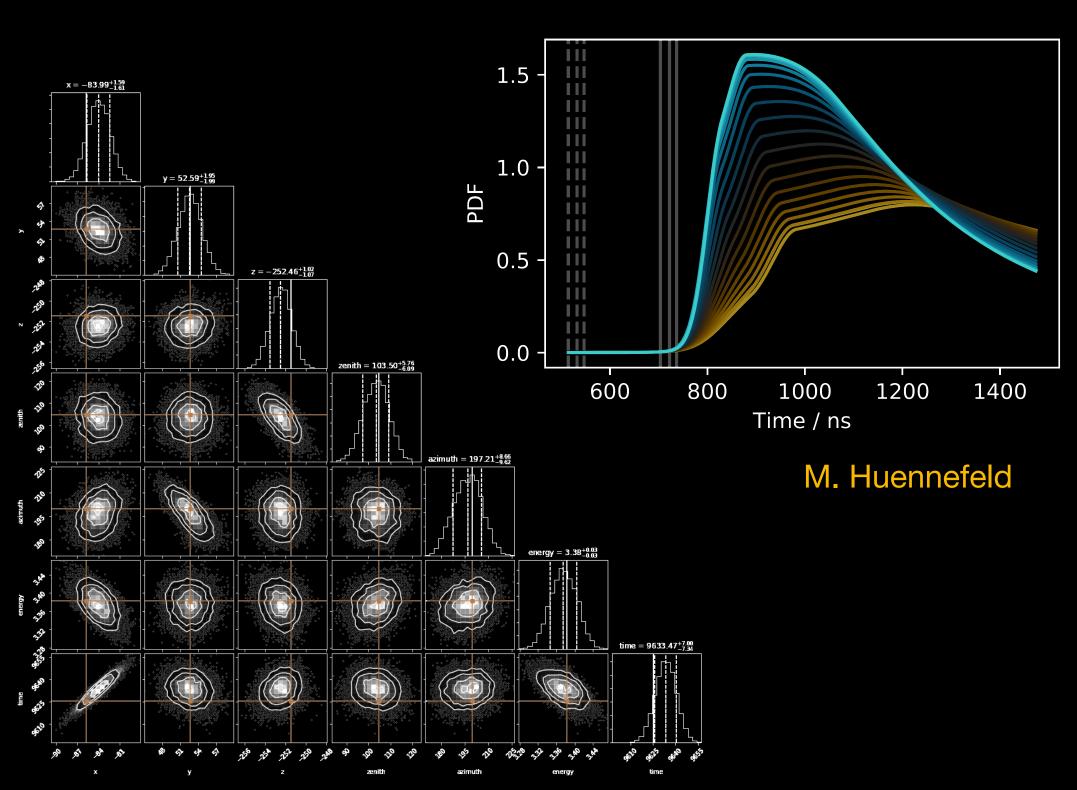
- Graph convolutions and static graphs
 - DOM-based GNN / Pulse-based GNN
- **Pros/Cons:** ullet
 - GNN can handle arbitrary detector grid
 - Graph convolutions enable use of translational symmetries
 - Inhomogeneities in detector medium are not naturally handled
 - Inclusion of additional domain knowledge is difficult
 - **DOM-based:**
 - Does not scale well with increasing number of pulses
 - **Pulse-based:**
 - Loss of information due to summary statistics per DOM



Hybrid MLE/DL Methods

- Methods that combine ML and "traditional" likelihood-based **methods**, e.g.: Generative NN to explicitly approximate Likelihood:
 - Generative NN to approximate arrival time PDF $p(x_i | \vec{\theta})$ and total expected charge $\hat{\lambda}$ at each DOM
 - Fully-differentiable approximation of MC simulation: gradients and Hessian available for optimization of \mathscr{L} and uncertainty estimation
- Also: work on likelihood-free inference
- **Pros/Cons:**
 - Symmetries and domain knowledge can easily be included
 - Use of complete event information (pulses/waveforms)
 - Supports arbitrary detector geometry
 - Increased reconstruction time due to optimization of \mathscr{L}





15

Other Directions

- Time-Convolutional Networks / Transformer-based networks
- Unsupervised Learning
- many, many more ...

Infrastructure 1/2 New ML-based project pop up (almost) once a month!

- We have GPUs available in IceCube, so some of the infrastructure for training exists
- However, larger-scale datasets can be hard to read/convert into formats suitable for training
 - How do you feed 100s of millions of events to your training algorithm efficiently?
 - Maybe you can even simulate these "just in time"?
 - Event-server architectures?

Infrastructure 2/2 New ML-based project pop up (almost) once a month!

- We still need to work on integrating technologies for solutions such as cloud-based accelerators (e.g. TPUs)
- Some of the existing architectures run into issues with training performance we need specific infrastructure supporting long-running (and potentially parallel) training jobs. Sometimes you need days to weeks of run time.
 - How do we support cloud-based solutions for ML developers?
 - How will they get their training data to the infrastructure?
- Running containerized training tools (as you would in industry) can be sometimes hard/tedious on our infrastructure (Singularity vs. Docker/Podman)
 - There is a whole ecosystem of container-based ML tools which we could potentially use we should evaluate our options

Summary

- Deep Learning Approaches already approved / deployed:
 - CNN based cascade reconstruction
 - CNN based classification for cascade real-time stream (we just sent a cascade HESE alert!)
- Coming up next:

- low-energy CNN (DeepCore event optimized)
- Hybrid MLE/DL method with explicit Likelihood
- **RNN** based reconstruction