

IceCube - DeepCore - PINGU

Darren R. Grant (for the IceCube Collaboration) Department of Physics, Centre for Particle Physics University of Alberta

Lake Louise Winter Institute Lake Louise AB Canada

Saturday, February 18, 12

The Neutrino Detector Spectrum

Borexino/KamLand/Daya Bay/Double Chooz/SNO/SuperK AMANDA/ANTRES/IceCube/KM3Net/ ANITA/RICE/Auger/ARIANNA

Non-accelerator based

* boxes select primary detector physics energy regimes and are not absolute limits

February 22, 2012

LLWI

Multimessenger Astronomy

ρ±

cosmic rays +

cosmic rays+ gamma-rays

Gamma rays and neutrinos should be produced at the sites of cosmic ray acceleration

The IceCube Neutrino Observatory

The IceCube Collaboration

36 institutions - 4 continents - ~250 Physicists

February 22, 2012

Darren R. Grant - University of Alberta

Amundsen-Scott South Pole Station, Antarctica

February 22, 2012

Darren R. Grant - University of Alberta

Saturday, February 18, 12

LLWI

Neutrino Telescopes - Principle of Detection

Tracks:

- through-going muons
- pointing resolution ~1°

Cascades:

- Neutral current for all flavors
- \bullet Charged current for v_e and low-E v_τ
- Energy resolution ~10% in log(E)

Composites:

- Starting tracks
- high-E v_τ (Double Bangs)
- •Good directional and energy resolution

The Digital Optical Module (DOM)

IceCube Performance Parameters

DOM Level

- time resolution
- charge response
- noise behavior
- reliability

Detector level

- angular resolution
- energy resolution
- final sensitivity

DOM Reliability

- ~14k years accumulated lifetime as of April 2011.
- 84 lost DOMs (fail commissioning) during deployments and freeze-in
- 19 lost DOMs after successful freeze-in and commissioning.

- Use of low-radioactivity glass for the pressure spheres and good PMT characteristics = very low noise rates.
- Average rate/sensor (including dead-time) = 286 Hz
- Sensor noise is stable and as expected. (Gaussian timing distribution is due to correlated hits from single DOM radioactivity and fluorescence in the glass and from multi-DOM cosmic-ray muons.)
- This is a critical parameter for high resolution of neutrino emission time profile of a galactic supernova core collapse.

IceCube Calibrations

- Depth dependence of the optical properties of the ice is a challenge to analyze and the flasher measurements have been crucial in the knowledge obtained thus far.
- Special color LED DOMs were deployed and their data is being analyzed to provide multi-wavelength ice calibration.
- The deepest ice, below 2100 m, has better properties than expected making it an excellent medium for particle detection.

February 22, 2012

Darren R. Grant - University of Alberta

IceCube Detector Performance

February 22, 2012

Darren R. Grant - University of Alberta

IceCube Detector Performance - Angular Resolution

IceCube Detector Performance - Angular Resolution

Existence of the moon - confirmed!

- Likelihood analysis determines deficit of events from direction of moon in the IceCube 59-string detector confirms pointing accuracy.
- Validates pointing capabilities with expected angular resolution for IceCube 80-string detector <1° at 1 TeV.

February 22, 2012

LLWI

Darren R. Grant - University of Alberta

Saturday, February 18, 12

IceCube Detector Performance - Effective Neutrino Area

- The detector performance parameters increase faster than the number of strings
- This is an effect of longer muon tracks providing improved angular resolution (lever arm) and energy reconstruction.
- Improved analysis techniques and new ideas (data quality, detector modeling, background simulations) underway will continue to push the improvements for IC86.

The IceCube Neutrino Observatory - A Wealth of Science...

Signal and Background considerations

Cosmic ray anisotropies

[S. Benzvi, M. Santander, S. Toscano, S. Westerhoff et al., ICRC 2011] [R. Abbasi, P. Desiati et al., ICRC 2001]

First significant observation of the anisotropy at 400 TeV in the southern sky.

February 22, 2012

LLWI

Cosmic ray anisotropies

- Anisotropy observed at 400 TeV persists significantly at 1 PeV
- The origin of the anisotropy is unknown:

 not consistent with the Compton-getting assuming the galactic cosmic rays closer to the knee.

- interstellar magnetic field
- reveals a new feature of the galactic cosmic ray distribution that must be put into the theories

IC40+IC59+IC79 Relative Intensity

Saturday, February 18, 12

February 22, 2012

Identify and reconstruct your best candidates (IceCube 40-string Detector)

- Operated for 375.5 days
 - Northern sky 14139 events
 - Southern sky 23151 events
 - Search for clustering of events in direction and energy.

Perform the Point Source Search (IceCube 40-strings)

• Search for an excess of astrophysical neutrinos from a common direction over the atmospheric neutrino background

• All sky search with >37K neutrino candidates (~23k from southern hemisphere atmospheric neutrinos

• Hottest spot in the 40-string data set was not significant (96% of scrambled sky maps have higher significance)

Most Recently from IceCube Point Source Searches...

February 22, 2012

LLWI

Diffuse Flux Analysis

- Extremely energetic explosions (output energies of the Sun's output integrated over a 10 billion year lifetime) observed in distant galaxies; lasting 20 - 40s.
- Expected to consist of a narrow beam of intense radiation released during the event (supernovae, neutron star, quark star, black hole formation)
- GRBs may account for high energy cosmic rays and their models predict emission of very high energy neutrinos.

NASA/Swift/Mary Pat Hrybyk-Keith John Jones illustration of one model of the bright gammaray burst GRB 080319B

Saturday, February 18, 12

IceCube Searches for Gamma Ray Burst Neutrinos

- Search for events correlated in time and direction of observed GRBs.
- •The small time/space window dramatically reduces backgrounds in the search
- In the IceCube 59-string dataset livetime there were 109 GRBs triggered by gamma ray observations (ie. Fermi) considering only those that would produce upward going events in the detector
- Each burst spectra is individually modeled and stacked

IceCube Searches for Gamma Ray Burst Neutrinos...sometimes a null result is a result!

- Search for events correlated in time and direction of observed GRBs.
- •The small time/space window dramatically reduces backgrounds in the search
- In the IceCube 59-string dataset livetime there were 109 GRBs triggered by gamma ray observations (ie. Fermi) considering only those that would produce upward going events in the detector
- Each burst spectra is individually modeled and stacked....No observed correlation!

Long-standing GRB models are being stringently tested!

February 22, 2012

Darren R. Grant - University of Alberta

IceCube Searches for Gamma Ray Burst Neutrinos...sometimes a null result is a result!

- Search for events correlated in time and direction of observed GRBs.
- •The small time/space window dramatically reduces backgrounds in the search
- In the IceCube 59-string dataset livetime there were 109 GRBs triggered by gamma ray observations (ie. Fermi) considering only those that would produce upward going events in the detector
- Each burst spectra is individually modeled and stacked....No observed correlation!

Long-standing GRB models are being stringently tested!

February 22, 2012

- High signal efficiency
- Unbinned weighting technique
- Wide variety of time scales for neutrino emission

Long-standing GRB models are being stringently tested!

Frant - University of Alberta

Indirect Dark Matter Searches

Saturday, February 18, 12

Indirect Dark Matter Searches

Saturday, February 18, 12
Solar WIMP search

- We utilize data when the Sun is below the horizon (March - September), resulting in nearhorizontal muon tracks.
 - AMANDA-II (2001 2006)
 - IceCube 22 and 40-strings (2007-2009)
 - Total exposure 1065 days.
- Several levels of filtering are applied to remove atmospheric muon backgrounds.
- Signal selection efficiency order of 20%, dependent on the neutrino energy.
- Angular resolution:
 - AMANDA (<500 GeV) 4 5 degrees
 - IceCube-22 (>500 GeV) 3 degrees
- Examine angular distribution Ψ for Sun and muon track.

Observed flux in live days is consistent with background expectations.

- Solar WIMP searches probe SD scattering cross section
 - SI cross section constrained well by direct search experiments
- Requires models of solar dark matter population distributions, annihilation modes

IceCube-22:

- Galactic centre is above the horizon
- Compare equal areas of on-source and off-source

• Select Halo and SUSY model, measure the flux and thus constrain the annihilation cross-section

IceCube-22 Limits - Phys. Rev. D 84, 022004 (2011)

Current IceCube limits

- Sensitivity depends strongly on annihilation channel (affects neutrino energy spectrum)
- IceCube 2008 (40-string) sensitivity already better than Super-Kamiokande for WIMP masses above a few hundred GeV
- Natural scale for thermal relics still several orders of magnitude lower

Limits (90% C.L.) on the self annihilation cross section ($\chi \chi \rightarrow$ WW, $\mu \mu$, $\nu \nu$)

The Neutrino Detector Spectrum

Borexino/KamLand/Daya Bay/Double Chooz/SNO/SuperK AMANDA/ANTRES/IceCube/KM3Net/ ANITA/RICE/Auger/ARIANNA

Non-accelerator based

* boxes select primary detector physics energy regimes and are not absolute limits

February 22, 2012

LLWI

The Neutrino Detector Spectrum

* boxes select primary detector physics energy regimes and are not absolute limits

IceCube

IceCube

IceCube-DeepCore

IceCube

DeepCore

- IceCube extended its "low" energy response with a densely instrumented infill array: DeepCore http://arxiv.org/abs/1109.6096
- Significant improvement in capabilities from ~10 GeV to ~300 GeV (v_{μ})
- Scientific Motivations:
- Indirect search for dark matter
- Neutrino oscillations (e.g., v_τ appearance)
- Neutrino point sources in the southern hemisphere (e.g., galactic center)

DeepCore Design

- Eight special strings plus seven nearest standard IceCube strings
- 72 m inter-string horizontal spacing (six with 42 m spacing)
- 7 m DOM vertical spacing
- ~35% higher Q.E. PMTs
- ~5x higher effective photocathode density
- Deployed mainly in the clearest ice, below 2100 m
- $\lambda_{eff} > \sim 50 \text{ m}$
- Result: 30 MTon detector with ~10 GeV threshold, will collect O(100k) physics quality atmospheric v/yr

DeepCore Effective Area and Volume

DeepCore Atmospheric Muon Veto

- Overburden of 2.1 km waterequivalent is substantial, but not as large as at deep underground labs
- However, top and outer layers of IceCube provide an active veto shield for DeepCore
- ~40 horizontal layers of modules above; 3 rings of strings on all sides
- Effective µ-free depth much greater
- Can use to distinguish atmospheric µ from atmospheric or cosmological v
- Atm. μ/ν trigger ratio is ~10⁶
- Vetoing algorithms expected to reach at least 10⁶ level of background rejection

Saturday, February 18, 12

First from DeepCore - Observation of Atmospheric Cascades

- Disappearing v_µ should appear in IceCube as v_τ cascades
 - Effectively identical to neutral current or v_e CC events
 - Could observe v_τ appearance as a distortion of the energy spectrum, if cascades can be separated from muon background
- First results from DeepCore are neutrino cascade events
 - The dominant background now is CC v_{μ} events with short tracks

Mena, Mocioiu & Razzaque, Phys. Rev. D78, 093003 (2008)

First from DeepCore - Observation of Atmospheric Cascades

- Disappearing v_µ should appear in IceCube as v_τ cascades
 - Effectively identical to neutral current or v_e CC events
 - Could observe v_τ appearance as a distortion of the energy spectrum, if cascades can be separated from muon background
- First results from DeepCore are neutrino cascade events
 - The dominant background now is CC v_{μ} events with short tracks

Candidate cascade event Run 116020, Event 20788565, 2010/06/06

First from DeepCore - Observation of Atmospheric Cascades

- A substantial sample of cascades has been obtained, final data set ~60% cascade events
 - Events have a mean energy ~180 GeV (not sensitive to oscillations with these first cuts)
 - Atmospheric muon background is being assessed (expected to be small)
- The potential to discriminate between atmospheric neutrino models exists and thus measuring air shower physics

న	Z:	Cascades	$\text{CC}\nu_\mu$	Total
prelimina	Bartol	650	454	1104
	Honda	551	415	966
	Data			1029

- Solar WIMP searches probe SD scattering cross section
 - SI cross section constrained well by direct search experiments
- Requires models of solar dark matter population distributions, annihilation modes

The Neutrino Detector Spectrum

Borexino/KamLand/Daya Bay/Double Chooz/SNO/SuperK AMANDA/ANTRES/IceCube/KM3Net/ ANITA/RICE/Auger/ARIANNA

Non-accelerator based

* boxes select primary detector physics energy regimes and are not absolute limits

February 22, 2012

LLWI

The Neutrino Detector Spectrum

Non-accelerator based

The underground community is preparing programs for large-scale detectors O(300 kT), with physics focused on long-baseline neutrinos, toward O(1MT), proton decay, supernova neutrinos.

Construction/Purification of the facilities for these detectors remain technological challenges of engineering.

IceCube-DeepCore

IceCube

DeepCore

IceCube-DeepCore

IceCube

DeepCore

IceCube-DeepCore-PINGU

IceCube

DeepCore

PINGU/MICA

(Precision IceCube Next Generation Upgrade/Multimegaton Ice Cherenkov Array)

~70 active members in feasibility studies:

IceCube, KM3Net, Several neutrino experiments

Photon detector developers

Theorists

February 22, 2012

Non-accelerator based

PINGU - Possible detector configurations

- First stage ("PINGU")
- Add ~20 in-fill strings to DeepCore to extend energy reach to ~1 GeV
 - improves WIMP search, neutrino oscillation measurements, other low energy physics
 - test bed for physics signals addressed by next stage
- Use mostly standard IceCube technology
- Include some new photon detection technology as R&D for next step
- Second stage ("MICA")
- Using new photon detection technology, build detector that can reconstruct Cherenkov rings for events well below 1 GeV
 - proton decay, supernova neutrinos, PINGU topics
- Comparable in scope (budget/strings) to IceCube, but in a much smaller volume

PINGU: Possible Geometry

- Could continue to fill in the DeepCore volume
 - E.g., an additional 18-20 strings (~1000 DOMs) in the 30 MTon DeepCore volume
 - Could reach O(GeV) threshold in inner 10 MTon volume

• Price tag would likely be around \$25M

PINGU: Effective Volumes

- Increased effective volume for energies below ~15 GeV
- Nearly and order of magnitude increase at 1 GeV (100s of kTon)
- Expected improvement over DeepCore > 10x despite above does not yet include analysis efficiencies

- Probe lower mass WIMPs
- Gain sensitivity to second oscillation peak/trough
 - will help pin down $(\Delta m_{23})^2$
 - enhanced sensitivity to neutrino mass hierarchy
- Gain increased sensitivity to supernova neutrino bursts
 - Extension of current search for coherent increase in singles rate across entire detector volume
 - Only 2±1 core collapse SN/century in Milky Way
 - need to reach out to our neighboring galaxies
- Gain depends strongly on noise reduction via coincident photon detection (e.g., in neighbor DOMs)
- Begin initial in-situ studies of sensitivity to proton decay
- Extensive calibration program
- Pathfinder technological R&D for SuperPINGU

PINGU Neutrino Mass Hierarchy

Possible sensitivity to neutrino mass hierarchy via matter effects if $\theta_{\rm 13}$ is large

Exploit asymmetries in the neutrino/ anti-neutrino cross section, kinematics

Effect is largest at energies below 5 GeV (for Earth diameter baseline)

Control of systematics will be crucial

Recent results suggest that nature may be kind and provide a sufficiently large θ_{13}

Simulations of 20-string PINGU with 5 years of data and $sin^2(2\theta_{13}) = 0.1$

Assumes perfect background rejection, selecting events within 25 degrees of vertical

Up to 20% (10 sigma) effects in several energy/angular bins

The signal is potentially there **if** the systematics can be controlled

Saturday, February 18, 12

PINGU Long Baseline Studies

Figure 12: The precision measurements of CP phase $\delta_{\rm CP}$ and $\sin^2 2\theta_{13}$ for three single-baseline neutrino experiments: Beta Beam (BB), Neutrino Factory (NF), and SuperBeam (SB). The contours represent the 1σ , 2σ and 3σ confidence levels (2 d.o.f.). Filled contours represent the PINGU benchmark setups, unfilled contours the reference setups. The crosses mark the best fit value of $\sin^2 2\theta_{13}$ and $\delta_{\rm CP}$. Here we assume the normal (true) hierarchy, the inverted (fit) hierarchy solution can be ruled out by the experiments.

MICA Conceptual Detector

- O(few hundred) strings of "linear" detectors within DeepCore fiducial volume
- Goals: ~5 MTon scale with energy sensitivity of:
 - O(10 MeV) for bursts
 - O(100 MeV) for single events
- Physics extraction from Cherenkov ring imaging in the ice
- IceCube and DeepCore provide active veto
- No excavation necessary: detection medium is the support structure

MICA Conceptual Detector

- O(few hundred) strings of "linear" detectors within DeepCore fiducial volume
- Goals: ~5 MTon scale with energy sensitivity of:
 - O(10 MeV) for bursts
 - O(100 MeV) for single events
- Physics extraction from Cherenkov ring imaging in the ice
- IceCube and DeepCore provide active veto
- No excavation necessary: detection medium is the support structure

- Proton decay
 - Studying sensitivity to $p \rightarrow \pi^0 + e^+$ channel
 - Requires energy threshold of ~100's of MeV
 - Background limited depends on energy resolution, particle ring ID
- Supernova neutrinos
 - Need to reach well beyond our galaxy to get statistical sample of SN neutrinos
 - Background levels may be too high for a ~10 MeV threshold for individual events, but still allows for observation of bursts of events
- Plus improvements for WIMP, oscillation analyses over PINGU-I & DeepCore

MICA Proton Decay

- For fiducial volume of 1.5 MT (5x10³⁵ protons) with 10 MeV energy threshold
- investigating $p \rightarrow \pi^0 + e^+$ channel as first step; clearly others to be studied
- Current predictions of SU(5) 10³⁶ yr sensitivity probe minimal realistic theory and SUSY SU(5) - 10³⁶ yr would rule out MSSM defined for M_{GUT} << M_{Planck}
- Backgrounds will be key
- MC studies needed to understand:
- energy resolution in a volume detector
- possibilities for e/μ ID from Cherenkov rings
- required photocathode coverage

- First simulations underway. Above from very simple strawman geometry using DOMs
- ~240 photons per MeV deposited energy.
 4-5% photons detected (assuming complete acceptance)

February 22, 2012

LLWI

MICA Proton Decay

- For fiducial volume of 1.5 MT (5x10³⁵ protons) with 10 MeV energy threshold
- investigating $p \rightarrow \pi^0 + e^+$ channel as first step; clearly others to be studied
- Current predictions of SU(5) 10^{36} yr sensitivity probe minimal realistic theory and SUSY SU(5) - 10^{36} yr would rule out MSSM defined for M_{GUT} << M_{Planck}
- Backgrounds will be key
- MC studies needed to understand:
- energy resolution in a volume detector
- possibilities for e/μ ID from Cherenkov rings
- required photocathode coverage

- First simulations underway. Above from very simple strawman geometry using DOMs
- ~240 photons per MeV deposited energy.
 4-5% photons detected (assuming complete acceptance)

February 22, 2012

LLWI
MICA SuperNovae

- With a large-scale detector, O(5MT), designed for proton decay, you essentially confer sensitivity out to O(10 Mpc).
 - Background constraints for proton decay are much larger than for supernova neutrinos (3000 photons per supernova neutrino with a 3% effective coverage = 100 photons/SN neutrino detected)
- Within the detector design ensure 10 MeV events detectable in burst mode.
- Caveat: LOTS of uncertainties (reconstruction, particle ID,...)

February 22, 2012

MICA SuperNovae

- With a large-scale detector, O(5MT), designed for proton decay, you essentially confer sensitivity out to O(10 Mpc).
 - Background constraints for proton decay are much larger than for supernova neutrinos (3000 photons per supernova neutrino with a 3% effective coverage = 100 photons/SN neutrino detected)
- Within the detector design ensure 10 MeV events detectable in burst mode.
- Caveat: LOTS of uncertainties (reconstruction, particle ID,...)

Geant4: γ 's from SN ν 's

Saturday, February 18, 12

MICA Detector R&D

Composite Digital Optical Module

- Glass cylinder containing 64 3" PMTs and associated electronics
 - Effective photocathode area >5x that of a 10" PMT
 - Diameter comparable to IceCube DOM so (modulo much tighter vertical spacing) drilling requirement would also be similar
 - Single connector
- Might enable Cherenkov ring imaging in the ice

February 22, 2012

Saturday, February 18, 12

Courtesy E. de Wolf & P. Kooijman

Summary

- IceCube completed construction in December 2010 on schedule and within budget.
- The detector is exceeding the initial performance goals. It is now has sensitivity to neutrinos of all flavors in a very wide energy range (10 GeV to 10⁹ GeV) in both hemispheres. Recent results have started stringently testing the models for astrophysical neutrinos.
- DeepCore has been running for 1 year and has just commenced taking data in its final configuration. First results are now appearing!
- Expect significant improvement in sensitivity to dark matter, potential for neutrino oscillations. Preliminary analysis suggests we may have detected atmospheric electron neutrinos for the first time in a high-energy telescope.
- Towards the future, South Pole ice may be prove to be an attractive alternative for large-scale precision neutrino detectors.
 Feasibility studies underway - stay tuned (or join in)!

