Recent results from IceCube

Kirill Filimonov, University of California, Berkeley, for the IceCube Collaboration
Cosmic rays: a 100 year-old mystery

Balloon flights
1911-1913

Victor Hess
Nobel 1936

Power law over many decades

Energies and rates of the cosmic-ray particles

1 event
km\(^{-2}\) yr\(^{-1}\)

Equiv. LHC energy

\(E^2 dN/dE\) (GeV cm\(^{-2}\) sr\(^{-1}\) s\(^{-1}\))
Cosmic ray – γ-ray – Neutrino connection

Cosmic accelerator (SNR, AGN, GRB, etc)

• Progenitor outflow
• Interstellar material
• Ambient photon field

Cosmic ray

$p + p \rightarrow \pi^0 \rightarrow \gamma + \gamma$
$p + \gamma \rightarrow \pi^\pm$
$\mu^\pm + \nu_\mu (\bar{\nu}_\mu)$
$e^\pm + \nu_e (\bar{\nu}_e) + \bar{\nu}_\mu (\nu_\mu)$

$p, \text{He, ...}$

Photons

Neutrinos
Neutrinos as Astronomical Messengers

- Cosmic accelerator
- CMB star-light
- p, He, ...
- Neutrino
- Neutrinos
- Photons
- Cosmic ray

Energy (eV):
- 10^9
- 10^{12}
- 10^{15}
- 10^{18}
- 10^{21}
Neutrino interaction with matter

\[\nu \rightarrow e, \tau, \nu_{e, \mu, \tau} \]

\[W \rightarrow N \rightarrow N' \]

\[Z \rightarrow N \rightarrow N' \]

\[\theta_{\nu \mu} \sim 0.7^\circ \left(\frac{E_{\mu}}{10 \text{ TeV}} \right)^{0.7} \]

\[\mu \text{ tracks (} \nu_{\mu} \text{)} \]

\[\nu_{\mu} \rightarrow \mu \]

\[> 3 \text{ km muon track} \]

\[\theta_{\nu \mu} \]

\[\text{Neutrino Telescope} \]

\[\text{Cascade (} \nu_{e, \tau} \text{ CC, } \nu_{e, \mu, \tau} \text{ NC)} \]

\[W \rightarrow e, \tau \]

\[Z \rightarrow \nu_{e, \mu, \tau} \]
Why the South Pole?

Antarctic Ice is the most transparent natural solid known.

Average optical ice parameters:

- $\lambda_{\text{abs}} \sim 110 \text{ m} @ 400 \text{ nm}$
- $\lambda_{\text{sca}} \sim 20 \text{ m} @ 400 \text{ nm}$
THE ICECUBE COLLABORATION

http://icecube.wisc.edu
39 institutions, 250 members

Canada:
University of Alberta

USA:
Bartol Research Institute, Delaware
Pennsylvania State University
UC Berkeley
UC Irvine
Clark-Atlanta University
University of Maryland
University of Wisconsin-Madison
University of Wisconsin-River Falls
Lawrence Berkeley National Lab.
University of Kansas
Southern University, Baton Rouge
University of Alaska, Anchorage
University of Alabama, Tuscaloosa
Georgia Tech
Ohio State University
SUNY at Stony Brook

Barbados:
University of West Indies

ANTARCTICA
Amundsen-Scott Station

Sweden:
Uppsala Universitet
Stockholm Universitet

UK:
Oxford University

Germany:
Universität Mainz
DESY-Zeuthen
Universität Dortmund
Universität Wuppertal
Universität Berlin
MPI Heidelberg
RWTH Aachen
Bonn
Bochum

Japan:
Chiba University

Belgium:
Université Libre de Bruxelles
Vrije Universiteit Brussel
Universiteit Gent
Université de Mons-Hainaut

Switzerland
EPFL, Lausanne
University of Geneva

New Zealand:
University of Canterbury

Australia:
University of Adelaide
IceCube

2004 Project Start, 1 string
2011 Project completion, 86 strings

IceCube Lab

IceTop
81 Stations, each with
2 IceTop Cherenkov detector tanks
2 optical sensors per tank
324 optical sensors

IceCube Array
86 strings including 8 DeepCore strings
60 optical sensors on each string
5160 optical sensors
December, 2010: Project completed, 86 strings

DeepCore
8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower
324 m

Bedrock
Digital Optical Module

DOM+Main Board - a complete data acquisition system

- internal digitization (waveform digitizers) and time stamping
- the photonic output signals from the PMT
- wide dynamic range: from single p.e. to thousands p.e.
- performs PMT gain and time calibration
- power consumption 3W, deadtime < 1%, dark noise rate < 400 Hz

Fig. 3. A schematic view of an IceCube digital optical module.
IceCube Detector Status, Rates

<table>
<thead>
<tr>
<th>Strings</th>
<th>Data (year)</th>
<th>Livetime</th>
<th>μ rate (Hz)</th>
<th>HE ν rate (per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMANDA II (19)</td>
<td>2000-2006</td>
<td>3.8 years</td>
<td>100</td>
<td>5 / day</td>
</tr>
<tr>
<td>IC40</td>
<td>2008-09</td>
<td>375 days</td>
<td>1100</td>
<td>38 / day</td>
</tr>
<tr>
<td>IC59</td>
<td>2009-10</td>
<td>360 days</td>
<td>1900</td>
<td>129 / day</td>
</tr>
<tr>
<td>IC79</td>
<td>2010-11</td>
<td>1 year</td>
<td>2250</td>
<td></td>
</tr>
<tr>
<td>IC86</td>
<td>2011-</td>
<td>13 days</td>
<td>2700</td>
<td></td>
</tr>
</tbody>
</table>

DeepCore Completed

IC86 Run Start on May 13, 2011
Background rejection

• Atmospheric ν: $dN/dE \sim E^{-3.7}$
• Prompt atmospheric ν: $dN/dE \sim E^{-2.8}$
• Extraterrestrial ν: $dN/dE \sim E^{-2.0}$ (model)

background ν
background ν
signal ν
Atmospheric muon neutrino spectrum

- IC40: 13,000 high-energy (E>100 GeV) atmospheric ν_μ (95% purity)
- Flux consistent with previous measurement (Phys.Rev.D83:012001,2011)
• Cosmic rays blocked by the moon lead to a point-like deficit in the distribution of down-going muons in the detector.
Moon Shadow

- Cosmic rays blocked by the moon lead to a point-like deficit in the distribution of down-going muons in the detector.

Need high statistics and good angular resolution!
Moon Shadow

- Cosmic rays blocked by the moon lead to a point-like deficit in the distribution of down-going muons in the detector.

- Moon shadow seen with $\sim 10\sigma$
- Systematic pointing error less than 0.1°
107,569 neutrino candidates (64,230 atm. μ from southern hemisphere)

- Hottest spot (Ra=75.45, Dec=-18.15) not significant: 75.4% of trials have p-value value equal or lower than the observed one

Search for point sources: all-sky
Search for Diffuse Neutrino Fluxes

Diffuse flux = effective sum from all (unresolved) extraterrestrial sources (e.g. AGNs)

Possibility to observe diffuse signal even if flux from an individual source is too small to be detected by point source techniques.

- Search for excess of astrophysical neutrinos with a harder spectrum than background atmospheric neutrinos

- Advantage over point source search: can detect weaker fluxes

- Disadvantage: high background

- Sensitive to all three flavors of neutrinos
Search for Diffuse Neutrino Fluxes

Experimental upper limits on the diffuse flux of neutrinos from sources with $\Phi \sim E^{-2}$ energy spectrum

Below the Waxman - Bahcall bound

IceCube, arXiv: 1104.5187
IC40 high-energy cascade search

E = 175 TeV

E = 45 TeV
IC40 high-energy cascade search (preliminary)

- 14 events pass cuts
- Detailed examination of the 14 events indicates ~4 events look like background from high energy cosmic rays
- Generating more monte carlo to make a better estimate for CR backgrounds and expected number of atmospheric neutrino events
Gamma-Ray Bursts

Fireball model:

- Internal shocks in GRBs \rightarrow acceleration for UHECRs.
- Neutrino production in γ-hadron interactions in fireball
GRB Analysis method

Use satellite measurements as trigger:

Look for neutrinos in the direction of GRB in a short (seconds to minutes) time window....
Search for neutrinos from GRBs, results

IC40: 117 Bursts
IC59: 109 Bursts (preliminary)
23 events at WB flux were expected, 0 observed
In 3 years IceCube will rule out fireball model or establish GRBs are not the only sources of UHECRs
Large-scale anisotropy of cosmic rays at 20 TeV

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)
Cosmic Ray Anisotropy at 400 TeV

Origin of the anisotropy remains a mystery
Summary

• IceCube detector completed construction Dec 2010
 – Run start May 13, 2011
 – The era of km³ neutrino astronomy has begun!
• The 40 and 59 string data have already surpassed the expected performance of the full IceCube on a number of searches
• No neutrinos seen from GRB
 – Setting important limits on astrophysics of fireball model
• No sources of high energy extraterrestrial neutrinos found as of today
• The sensitivity increases with the detector size, the data taking and analyses techniques

cosmic ray (CR) spectrum, • CR composition • CR anisotropies • atmospheric neutrinos (oscillations, effects of quantum gravity, …) • neutrino point sources • gamma ray bursts • multimessenger approaches • diffuse ν fluxes • dark matter • magnetic monopoles • supernova bursts • shadow of the moon • atmosphere physics • glaciology • new technologies for highest energies (radio, acoustics) • DeepCore and low-energy analyses•