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The IceTop Air Shower Array: detector overview, physics goals and first results

THE ICECUBE COLLABORATION1

1See special section in these proceedings

Abstract: IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array
with an area of 1 km2. The detector is primarily designed to study the mass composition of primary cosmic rays in
the energy range from about 1014 eV to 1018 eV by exploiting the correlation between the shower energy measured in
IceTop and the energy deposited by muons in the deep ice. Construction of IceCube, including the IceTop component,
was completed in December 2010. The final detector configuration, first operation and performance experiences, the
development of an analysis framework, and first results will be reported.

Corresponding author: Hermann Kolanoski (Hermann.Kolanoski@desy.de)
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

Keywords: Cosmic rays, IceCube, IceTop

1 Introduction

The Neutrino Observatory IceCube is a 1-km3 detector sit-
uated in the ice of the geographic South Pole at a depth
of about 2000 m. IceTop, the surface component of Ice-
Cube, is an air shower array covering an area of 1 km2.
The prime purpose of IceTop is the determination of the
mass composition of primary cosmic rays in the energy
range from about 1014 eV to 1018 eV. In the ‘knee’ region,
at several PeV, the spectral index of the observed cosmic
ray energy spectrum changes. Several experiments found
this change to be accompanied by a change in the chemi-
cal composition of the primaries. However, details of the
features are not well known. In particular, there may be
at the high end of the IceTop energy range another change
of the spectral index and an accompanying change of the
composition, possibly indicating the transition from galac-
tic to extra-galactic origin of cosmic rays. An improve-
ment of the experimental situation in this energy range –
between direct measurements with balloons and satellites
and the highest energies tackled by experiments like HiRes
and Auger – is one of the main goals of cosmic ray physics
with IceCube.
The mass determination from extended air showers (EAS)
is notoriously difficult because the measurements are indi-
rect and have to rely on models for the hadronisation pro-
cesses. Observables sensitive to the primary mass compo-
sition are mainly the height of the shower maximum (mea-
sured through fluorescence, Cherenkov or radio emission)
and the number of muons in a shower. Concerning the
muon rate, the highest energy muons stemming from the

first interactions in the higher atmosphere are most closely
correlated to the mass of the primary nucleus. IceCube, in
combination with IceTop, offers the unique possibility to
observe these muons, typically with initial energies above
about 500 GeV, in the deep ice in coincidence with the
mostly electromagnetically deposited shower energy mea-
sured at the surface. This provides an exceptionally power-
ful method for the determination of the mass composition.
To scrutinize the dependence on hadronisation models, sev-
eral alternative methods for studying mass composition
have been developed by the IceCube collaboration. Other
mass sensitive observables are for example: the shower ab-
sorption in the atmosphere at different zenith angles, the
number of dominantly low-energy muons in the surface de-
tector, and other shower properties such as shower age and
shower front curvature.
The IceTop array has additionally been used to study high-
pT muons, PeV-gammas and transient events, such as the
radiation effects of solar flares. It also serves as a veto for
the detection of downward-going neutrinos with IceCube
and for direction calibration.

2 The detector

The IceCube construction was completed in December
2010. The results presented here are based on data taken
with smaller detector configurations.

IceCube: The main component of Icecube is an array of
86 strings equipped with 5160 light detectors in a volume 1
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Figure 1: The IceCube Observatory with its components
DeepCore and IceTop.

of 1 km3 at a depth between 1450 m and 2450 m (Fig. 1). In
the lower part of the detector a section called DeepCore is
more densely instrumented. The main purpose of IceCube
is the detection of high energy neutrinos from astrophysical
sources via the Cherenkov light of charged particles gener-
ated in neutrino interactions in the ice or the rock below the
ice.

IceTop: The IceTop air shower array is located above
IceCube at a height of 2832 m above sea level, correspond-
ing to an atmospheric depth of about 680 g/cm2. It consists
of 162 ice Cherenkov tanks, placed at 81 stations and dis-
tributed over an area of 1 km2 on a grid with mean spacing
of 125 m (Fig. 1). In the center of the array, three stations
have been installed at intermediate positions. Together
with the neighbouring stations they form an in-fill array for
denser shower sampling. Each station comprises two cylin-
drical tanks, 10 m apart from each other, with a diameter of
1.86 m and filled with 90 cm ice. The tanks are embed-
ded into the snow so that their top surface is level with the
surrounding snow to minimize temperature variations and
snow accumulation caused by wind drift. However, snow
accumulation (mainly due to irregular snow surfaces) can-
not be completely avoided so that the snow height has to
be monitored (see ref. [1]) and taken into account in simu-
lation and reconstruction (currently this is still a source of
non-negligible systematic uncertainties).
Each tank is equipped with two ‘Digital Optical Mod-
ules’ (DOMs), each containing a 10′′ photo multiplier tube
(PMT) to record the Cherenkov light of charged particles
that penetrate the tank. In addition, a DOM houses complex
electronic circuitry supplying signal digitisation, readout,
triggering, calibration, data transfer and various control
functions. The most important feature of the DOM elec-
tronics is the recording of the analog waveforms in 3.3 ns
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Figure 2: Reconstruction of shower parameters from the
lateral distribution.

wide bins for a duration of 422 ns. DOMs, electronics and
readout scheme are the same as for the in-ice detector.
The two DOMs in each tank are operated at different PMT
gains (1 ·105 and 5 ·106) to cover a dynamic range of more
than 104. The measured charges are expressed in units of
‘vertical equivalent muons’ (VEM) determined by calibrat-
ing each DOM with muons (see ref. [1]).
To initiate the readout of DOMs, a local coincidence of
the two high gain DOMs of a station is required. This re-
sults in a station trigger rate of about 30 Hz compared to
about 1600 Hz of a single high gain DOM at a threshold
of about 0.1 VEM. The data are written to a permanent
storage medium, and are thus available for analysis, if the
readouts of six or more DOMs are launched by a local coin-
cidence. This leads to a trigger threshold of about 300 TeV.
Additionally, IceTop is always read out in case of a trigger
issued by another detector component (and vice versa). For
each single tank above threshold, even without a local co-
incidence, condensed data containing integrated charge and
time stamp are transmitted. These so-called SLC hits (SLC
= ‘soft local coincidence’) are useful for detecting single
muons in showers where the electromagnetic component
has been absorbed (low energies, outer region of showers,
inclined showers).
For monitoring transient events via rate variations, the time
of single hits in different tanks with various thresholds are
histogrammed.

3 Shower reconstruction

For each triggered tank in an event, time and charge of
the signal are evaluated for further processing. Likelihood
maximisation methods are used to reconstruct location, di-
rection and size of the recorded showers. In general, signal
times contain the direction information, and the charge dis-
tribution is connected to shower size and core location. The
standard analysis requires five or more triggered stations
leading to a reconstruction threshold of about 500 TeV. A
constant efficiency is reached at about 1 PeV, depending
on shower inclination. For small showers an effort was
launched to decrease the threshold to about 100 TeV with
a modified reconstruction requiring only three stations.

2
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The lateral signal distribution is fitted by a function which
describes the logarithm of the tank signals as a second or-
der polynomial in the logarithm of the distance from the
shower axis (Fig. 2). Characterizing the shower size the
signal S125 at a reference radius Rref = 125 m, coincid-
ing with the grid spacing, has been used for the analyses
presented in this paper. Studies of alternative lateral distri-
bution functions are reported in a separate contribution to
this conference [2].
The true energy spectrum is obtained by unfolding the S125

distribution in different zenith angular ranges. Since the
unfolding matrices depend on the primary mass composi-
tion, a mass model has to be assumed [3] or the correlation
with mass sensitive observables, most notably the muon
number in the deep detector, has to be exploited for an es-
sentially two-dimensional unfolding [4].
The energy resolution improves with energy and ap-
proaches 0.05 in log10 E, or 12 % in E, at about 10 PeV
for zenith angles less than 30◦. The angular resolution is
better than 1◦, almost independent of energy and zenith an-
gle. The detector coverage is A Ω ≈ 3 km2 sr for IceTop
alone and A Ω ≈ 0.3 km2 sr for coincidences with the in-
ice detector.

4 First results
Energy spectrum: The shower reconstruction from Ice-
Top signals has been developed mainly using data taken
with 26 stations (nearly 1/3 of the complete detector) in
2007. The spectra of the shower size parameter S125 for
three different zenith angular ranges are shown in Fig. 3.
Except for the threshold region, this parameter is a close
proxy for the primary energy for a given zenith angle range.
The relation between S125 and the true energy is mass de-
pendent. Under the assumption of an isotropic cosmic ray
flux, the S125 spectra for different zenith angles should
yield the same energy spectrum. It has been shown that
this can only be achieved under the assumption of a mixed
composition [3].
A first evaluation of IceTop data from the 2010 season with
79 IceCube strings and 73 IceTop stations is reported else-
where in these proceedings [5].

Mass composition using IceTop and deep-ice coinci-
dences: As emphasized in the introduction, a strength of
IceCube is the possibility to measure high energy muons in
the deep ice in coincidence with the shower reconstructed
in IceTop. The first analysis of such coincident data is pre-
sented at this conference [4]. The data set is constrained to
a small fraction of the detector and a relatively short time
period (about 1 month). However, the results are currently
more affected by systematic uncertainties than by statistics.
Figure 4 shows a simulation of the correlation between the
parameter K70, which measures the muon energy in the
deep ice, and the shower size parameter S125, which is a
measure of the electromagnetic component of the shower.
Different primary masses populate different bands in this
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Figure 3: Measured spectrum of the shower size parameter
S125 for three different zenith angular ranges (data from 6
months with 26 IceTop stations).
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Figure 4: Mass composition measurement: plotted is the
muon energy parameter K70 measured in the deep ice ver-
sus the shower size S125. The band is obtained by sim-
ulating proton and iron primaries. The shading indicates
the proton content, with 100% protons at the bottom und
100% iron at the top. Indicated are also curves of constant
primary energy as determined by a neural net (the labels are
in units log10 E/GeV). The points and the vertical bars are
averages and dispersions, respectively, of the measured ex-
perimental distributions of a log10 S125 bin (indicated by
the horizontal bars) projected unto the log10 K70 axis.

Figure 5: IceCube event display showing light signals in
DOMs: Candidate muon bundle with a high-pT muon (on
the right).

3
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Preliminary

Figure 6: Muon counting in IceTop: Distribution of tank
signals for various cuts on the signal expectation Sexp in
the energy range between 1 and 30 PeV.

plot. Indicated are also curves of constant primary energy.
The data points in log S125 bins are plotted with the disper-
sion of their distribution along the K70 axis.
With a neural network, the primary energy and a parame-
ter related to ln A (A is the atomic mass number) has been
determined yielding an energy and average ln A spectrum
between 1 and 50 PeV. The method allows for the extrac-
tion of multiple mass contributions from fits to the neural
network output, see details in ref. [4].

High-pT muons: Prompt decays of heavy flavour
hadrons occurring in the first interactions are expected to
produce muons with large transverse momentum. The pre-
dictions are still very model dependent. In these proceed-
ings, an analysis is presented [6] where high-pT muons
have been found as single tracks separated from a muon
bundle by more than 200 m (Fig. 5). Current work concen-
trates on understanding the systematic uncertainties in the
resulting pT distribution.

Searching for PeV gamma rays: IceCube can effi-
ciently distinguish PeV gamma rays from the background
of cosmic rays by exploiting coincident in-ice signals as
veto. Gamma-ray air showers have a much lower muon
content than cosmic ray air showers of the same energy.
Candidate events are selected from those showers that lack
a signal from a muon bundle in the deep ice. Results of
one year of data, taken in the 2008/2009 season when the
detector consisted of 40 strings and 40 surface stations, are
presented at this conference [7]. The projected gamma-ray
sensitivity of the final detector is also given.

Muon counting in IceTop: The muon content of a
shower is a mass sensitive observable since heavier pri-
maries tend to have a higher muon abundance. Although
the number of high energy muons in the muon bundle near
the shower core is most sensitive, muons counted at the
surface (at typically much lower energies than in the deep
ice) provide additional information on the mass. The com-
parison of both methods allows one to test hadronisation
models.

preliminary

Figure 7: Average scaler rates of several tanks in IceTop
during a period in February 2011 when a Forbush decrease
occured.

Muonic and electromagnetic signals in IceTop can in gen-
eral not be distinguished. However, muons show up as a
relatively constant signal of about 1 VEM at larger dis-
tances from the shower axis where the expectation value
of a tank signal, Sexp, becomes small compared to a muon
signal (Sexp is obtained from the fit to the lateral shower
distribution). As shown in Fig. 6, the muon signal becomes
more and more prominent when requiring smaller Sexp.
For Sexp < 0.125 VEM the figure illustrates that the num-
ber of muons can be well fitted. Comparing these muon
numbers as a function of energy to simulations of different
primary masses an independent information on the mass
composition is obtained.

Heliospheric physics: The IceTop tanks detect sec-
ondary particles produced by cosmic rays in the multi-GeV
energy regime interacting in the atmosphere with a count-
ing rate exceeding 1 kHz per detector. With IceTop, he-
liosperic disturbances of this rate can be studied with very
good time resolution. Since each detector has a different
threshold setting, it is also possible to estimate the en-
ergy spectrum of the cosmic rays related to such events.
In an IceCube contribution to this conference [8] the per-
formance during a Forbush decrease observed in February
2011 is demonstrated (Fig. 7).

Other cosmic ray results: At this conference the Ice-
cube Collaboration also reports results on the observation
of cosmic ray anisotropies in the southern sky [9]. These
results and the cosmic ray studies in ref. [10] use all muons
detected in the deep detector which gives a much larger an-
gular coverage.
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Abstract: The IceCube Observatory at the South Pole is composed of a deep detector and a surface detector, IceTop,
both of which use Cherenkov light to detect charged particles. Cosmic ray air showers contain multiple particle
components: in particular, electrons and muons detectable at the surface by IceTop, and high-energy muons detectable
by the deep IceCube detector, in relative amounts that depend on the primary cosmic ray mass. Thus, coincident events
can be used to measure both the energy and the mass composition. Here, a neural network is trained with simulations to
map observables from the two detectors (input) into energy and mass estimators (output). Experimental data is then run
through the same network, to measure the energy spectrum and average logarithmic mass of cosmic rays in the energy
range of about 1-30 PeV.
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1 Introduction

Measuring more than one particle component of a cosmic
ray air shower is a powerful tool for separating light and
heavy nuclei in Extensive Air Shower (EAS) data, at ener-
gies at the knee and above where direct measurements of
cosmic rays are not possible. The IceCube Observatory at
the South Pole is being used in such a manner, with an ar-
ray of light sensors (Digital Optical Modules, or DOMs)
buried on strings between 1450 and 2450 m (herein “Ice-
Cube”) together in coincidence with a corresponding array
of DOMs in frozen water tanks on the surface (“IceTop”).
An IceTop “station” is two tanks separated by 10 m; Ice-
Cube strings and IceTop stations are separated by 125 m
[1].
Both instruments measure the Cherenkov light emitted by
charged particles through the surrounding medium. In Ice-
Top, the medium is water frozen in tanks at the site. The
DOMs in the tanks measure light from the electromag-
netic and GeV muonic components of the EAS. In IceCube,
the medium is the Antarctic icecap, and the deeply-buried
DOMs measure light from high-energy (TeV) muons bun-
dled near the central axis of the shower.

2 Reconstruction

Events in IceTop are reconstructed by a likelihood method
[3], comparing the detected signal locations, charges, and
times from hit stations (as well as the locations of not-hit
stations) to what is expected from a cosmic ray EAS. Sig-
nal times are compared to an expected timing profile, and
signal charges are compared to an expected lateral distri-
bution function (LDF). The LDF used, a function of the
perpendicular distance from the shower axis, r, is known
as the “Double Logarithmic Parabola,”:

S(r) = Sref ·

(

r

Rref

)

−β−κ log
10

(

r
Rref

)

. (1)

The logarithm of the signals S are assumed to have nor-
mal distributions, and are expressed in units of “vertical
equivalent muons” (VEM). Here, Rref represents a “refer-
ence distance” from the shower axis, and Sref is the signal
strength at that reference distance. The reference distance
found to have the most robust measurement at these ener-
gies is 125 m [3], so S125 is the observable representing the
“shower size”.
Events in IceCube are reconstructed with a similar philos-
ophy: the signals NPE , measured in photoelectrons, are
compared to an LDF which is a function of perpendicular
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distance to the track d (described in detail in [4, 5, 6]):

NPE(d, X, z) = A
[a

b

(

ebX
− 1

)

]

−γµ e−d/(cice(z)·λ0)

√

(cice(z) · λ0)d
.

(2)
This function of d is dominated by the decaying exponen-
tial; the “slope” of this exponential is the attenuation length
of light in the ice. Since the clarity of the ice changes due
to well-measured horizontal dust layers [7, 8], this slope
is treated as a bulk attenuation length λ0 multiplied by a
depth-dependent correction factor cice based on scattering
length data measured at different depths z. The first term,
containing the slant depth from the snow surface X , cor-
rects for the ranging-out of muons as they penetrate deeper
into the ice; the parameters a, b, and γµ in the first term are
constants.
The overall normalization of this LDF scales with the
energy deposited by muons in the detector, and this is
parametrized with K70, which is the expected signal (given
by Equation (2)) evaluated using reference values of X
= 1950 m, cice = 1, and at a perpendicular distance d =
70 m. Since the track direction affects the signal expec-
tation NPE at all the DOMs (by changing d and X), the
same likelihood function can also be used to find the track
direction. These two reconstruction techniques (using sur-
face signals to find the core position and S125 in IceTop,
and using signals in IceCube to find the track direction and
K70) are used iteratively to find a reliable best-fit track.

3 Data, Simulation, and Event Selection

This analysis used data from August 2008, when the de-
tector was in its 40-string/40-station configuration, for
an overall detector livetime of 29.78 days. Because of
unsimulated effects near the detector threshold due to
snow buildup over tanks deployed before 2007, data from
the subarray of IceTop deployed after 2007 were used.
Monte Carlo simulated events were produced using the
CORSIKA air shower generator [9] with the SIBYLL-
2.1/FLUKA-2008 hadronic interaction models [10, 11],
and an atmospheric model representing austral winter at
the South Pole. Five particle species (proton, helium, oxy-
gen, silicon, and iron) were generated according to an E−1

spectrum from 1 TeV to 46.4 PeV. The showers (3000 of
them per species per third of a decade in energy) were gen-
erated uniformly over all azimuths and to a zenith angle
of 65◦, oversampled 100 times, and thrown over a circle
of radius 1200 m centered on IceTop. The response of the
IceTop tanks, the propagation of the high-energy muons
through the ice to the depth of IceCube, the Cherenkov
photons propagating to the DOMs, and the response of the
DOMs themselves, are included in a detector simulation.
Quality cuts were applied to select those events which were
well-reconstructed and contained within both the IceTop
area and IceCube detector volume. Parameters such as
track length and reconstructed effective propagation length
(λ0) were used to quantify reconstruction quality (see [6]

for details). These cuts allow for a resolution (containing
68% of events) of better than 9 m in core position and less
than 0.5◦ in track direction. The final event sample contains
239797 events from the August 2008 experimental data and
20289 total simulated events of five primary species.

4 Neural Network Mapping Technique

Once S125 and K70 have been reconstructed and quality
cuts applied, simulations show that light and heavy nu-
clei are separated in this two-dimensional parameter space,
as shown in Figure 1. The relation between the K70-
S125 space and the mass-energy space is non-linear, there-
fore a mapping technique is required to correlate one space
to the other.
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Figure 1: Fraction of each bin populated by protons
(when only protons and iron are included in the sample).
Dark grey indicates 100% iron, light grey indicates 100%
protons; intermediate greys indicate overlapping popula-
tions. The dotted black lines approximating energy con-
tours guide the eye for both nuclei.

A neural network was chosen for this work, which consists
of a set of input parameters (in this case, K70 and S125)
which are connected to a set of output parameters (in this
case, log10(E) and ln(A)) through a series of nodes which
are arranged in layers. Each node is connected to other
nodes in the previous and subsequent layer via a series of
weights. At each node, an activation function acts on its
input parameters as modified by the weights. Both the two
inputs and the two outputs are renormalized so that they are
numbers between zero and one.
The weights relating the inputs to the outputs are deter-
mined by “training” the network on a subsample of the
Monte Carlo simulations (1/4 of the events) for which the
true energy and true mass are known. Through a series of
learning cycles, the network adjusts the weights to improve
the accuracy of reconstructed outputs. A “testing” sample
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(an independent 1/4 of the events) are put through the net-
work after each learning cycle and the errors monitored to
ensure that the network is not becoming too specific to the
training events, or being “overtrained”. The remaining half
of the simulated data is known as the “analysis” sample and
was used for the final steps described in section 6 below.

5 Energy Spectrum

For each event of experimental data, the neural network as-
signs a reconstructed energy and a reconstructed mass pa-
rameter. Reconstructed energies agree well with the true
energies of simulated events; Figure 2 shows the energy
resolution, and the reconstruction bias, as a function of en-
ergy.
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Figure 2: Upper: The energy resolution of the neural
network output (sigma of distribution of log(Ereco) −

log(Etrue)). Lower: The bias or misreconstruction of en-
ergy (mean of that distribution).

From these reconstructed energies, one can create an all-
particle energy spectrum from experimental data. For a
given flux Ψ as a function of energy E0,

Ψ(E0) =
1

ηAΩτ

dN

dE
=

1

ηAΩτ

0.4343

E0

dN

dlog10(E0)
, (3)

where η is the efficiency (the ratio of simulated events left
after all cuts to the number generated, which is a function
of E0), A is the area over which the CORSIKA showers
were thrown, τ is the livetime of the detector (in this case
29.78 days), and Ω is the solid angle over which the events
were generated. The resulting energy spectrum is shown in
Figure 3.
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Figure 3: Measured all-particle flux as a function of particle
energy, from August 2008 experimental data, with statisti-
cal error bars. Triangles indicate alternate spectra derived
from data with K70’s shifted up or down by 22.2% (see
section 7).

6 Mass Composition

Within each slice in energy and for each simulated species,
the neural network produces a distribution of mass outputs
which is called a “template histogram”. Examples of tem-
plate histograms for three kinds of primaries are shown in
Figure 4, for one slice in energy as an example. Data, when
put through the same neural network, also has a histogram
of outputs which can be decomposed into a linear combi-
nation of the template histograms of the individual species
(proton, oxygen, etc.). A minimizer finds the optimal mix-
ture of simulated species to match the data.
Proton and iron template histograms alone are not suffi-
cient to reproduce the data, and so intermediate nuclei are
necessary. Because there is a great deal of overlap between
the template histograms of all five nuclei, we matched the
data to a combination of three template histograms: pro-
tons, iron, and “intermediate nuclei” (which is a 50-50 mix-
ture of helium and oxygen). When this procedure is applied
to a “hand-mixed” sample of Monte Carlo events (treating
the sample like data, with different ln(A) at different ener-
gies), the fit found mixtures which correctly reproduced the
ln(A) at all energies. When the procedure was applied to
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Figure 4: Three “template histograms”: protons, iron, and
a 50-50 mixture of helium and oxygen. The energy bin
shown here is log10(E/GeV) from 6.9 to 7.1.

experimental data from August 2008, the ln(A) as a func-
tion of energy was computed and is shown in Figure 5.
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Figure 5: Measured ln(A) as a function of reconstructed
energy, with statistical error bars. Triangles indicate alter-
nate results if K70 is shifted up or down by 22.2%.

7 Systematic Errors

Both Figures 3 and 5 include estimates of the systematic
error due to a variety of effects:

• Hadronic Interaction Model: Samples of events sim-
ulated with both EPOS-1.99 [12] and QGSJET-II-03
[13] were generated for comparison with SIBYLL.
Percent error in K70: 9.7%

• Ice Model: Since K70 depends on the propagation
of photons through the ice, the effect of two differ-
ent models of the attenuation of light in dust layers
(known as AHA [7] and SPICE [8]) were investi-
gated. Percent error in K70: 9.7%

• DOM Efficiency: The efficiency of the DOMs in Ice-
Cube depends upon a number of factors, which have
been measured in a controlled setting [14]. Percent
error in K70: 8%

• Errors introduced from corrections: The Monte
Carlo simulation used for this work did not include
two relevant effects: a recent improvement of the pa-
rameterization of the light yield from muon bundles
in IceCube, and the accumulation of snow on the sur-
face above IceTop. The effects were quantified and
corrected for, but some error due to the application of
this correction was estimated. Percent error in K70:
14.8% and 4.7%, respectively

The total systematic shift in K70 (added in quadrature) is
22.2%. The effect of these systematics on the final results
(i.e. the spectrum in Figure 3 and the mass composition in
Figure 5) were studied by applying these errors as shifts to
the input parameters of the neural network (i.e. K70) before
it goes through the neural network, and seeing how the out-
put parameters, and any analysis downstream of the neural
network, changes. Both of these figures show alternative
results with such a shift (both up and down) applied. If
improved simulations eliminate the errors introduced from
corrections, the total systematic error could be substantially
reduced.
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Abstract: The high statistics of cosmic ray induced muon events detected by the IceCube Observatory makes it possible
to study the correlation of muon intensity with the stratospheric temperature over Antarctica with high precision. Using
150 billion events collected by IceCube experiment over 4 years, the muon rate was found to be highly correlated with
daily variations of the stratospheric temperature and exhibits a± 8% annual modulation. The correlation between the
muon rate and the upper atmospheric temperature is related to the relative contribution ofπ and K to the production of
muons. Therefore it is possible to estimate the K/π ratio from the seasonal variation of the muon rate, which was found
to be 0.09± 0.04 at cosmic ray median energy of about 20 TeV.
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1 Introduction

When cosmic ray particles enter the Earth’s atmosphere,
they generate a hadronic cascade in which mesons are pro-
duced, primarily pions and kaons. These mesons can either
interact again or decay into muons. The relative probability
of decay or interaction depends on the local density of the
atmosphere, which in turn depends on the temperature [1].
The differential flux of muons with energies larger than 100
GeV can be described with good approximation as [2]

φµ(Eµ, θ) = φN (Eµ) ×

{

Aπµ

1 + Bπµ cos θ⋆ Eµ/ǫπ

+
AKµ

1 + BKµ cos θ⋆ Eµ/ǫK

}

, (1)

whereφN (Eµ) is the primary spectrum of nucleons (N )
evaluated at the energy of the muon. The first term in
Eq. 1 corresponds to muon production from leptonic and
semileptonic decays of pions, while the second term is re-
lated to kaons. The constantsAπµ andAKµ include the
branching ratio for meson decay into muons, the spectrum
weighted moments of the cross section for a nucleon to pro-
duce secondary mesons, and those of the meson decay dis-
tribution. The denominators in Eq. 1 reflects the competi-
tion between decay and interaction of secondary mesons in
the atmosphere. WhenEπ,K < ǫπ,K /cosθ⋆, the meson de-
cay is the dominant process, and muons are produced with
the same spectral index as the parent cosmic rays. At high

energy meson interaction dominates and the corresponding
muon spectrum becomes one power steeper than the pri-
mary spectrum. The characteristic critical energiesǫπ,K

at a given atmospheric depth are inversely proportional to
the atmosphere’s density at that point, and therefore are af-
fected by temperature variations. In an isothermal approxi-
mation of the atmosphere, the density is described by an ex-
ponential with a scale height ofh◦ ≈ 6.19 km (over Antarc-
tica). The numerical value applies to the lower strato-
sphere, where most of the muons are generated. In this
approximationǫπ,K are proportional to the atmosphere’s
temperature in the perfect gas state limit. At a mean at-
mospheric temperature ofT◦ = 211◦K the critical energies
areǫπ = 111 GeV andǫK = 823 GeV. The dependence of
the critical energies on temperature is the main source of
the seasonal variation in muon rate. This modulation was
studied by underground experiments such as MACRO [3],
LVD [4] and MINOS [5], and by AMANDA [6] and Ice-
Cube [7]. Here we update the analysis with four years of
IceCube data with an emphasis on the systematic effects
that can be studied with a very large amount of data.

2 Temperature Correlation

The relation between the variation of temperature and the
variation of muon intensity at a particular energy and zenith
angle can be expressed in terms of a theoretical correlation
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coefficient calculated from Eq. 1 as

αµ(Eµ, θ) =
T

φµ(Eµ, θ)

∂φµ(Eµ, θ)

∂T
, (2)

which depends explicitly on the characteristic critical ener-
giesǫπ,K .

Measured rates depend on the convolution of the muon dif-
ferential spectrum with the detector response, which de-
pends on muon energy and zenith angle. To compare
with measurements, it is therefore necessary to calculate
a weighted correlation coefficient as

αth
T (θ) =

T · ∂
∂T

∫

dEµ φµ(Eµ, θ)Aeff (Eµ, θ)
∫

dEµ φµ(Eµ, θ)Aeff (Eµ, θ)
, (3)

whereAeff (Eµ, θ) is the effective detector area obtained
from simulation. Eq. 3 defines the correlation coefficient
for a particular zenith angleθ. The total correlation co-
efficient is then obtained by averagingαth

T (θ) overθ with
a weight given by the observed event angular distribution.
With this definition the variation in muon intensityIµ is
given by

∆Iµ

Iµ
= αth

T

∆Teff

Teff
, (4)

whereTeff is the effective atmospheric temperature as de-
fined below. Since the rateRµ of observed muons is pro-
portional to the incident muon intensityIµ, it is correlated
with the effective temperature as well

∆Rµ

〈Rµ〉
= αexp

T

∆Teff

〈Teff 〉
, (5)

whereαexp
T is the experimentally determined correlation

coefficient.

Since muon production occurs over an extended portion of
the upper atmosphere and the temperature depends on al-
titude, it is necessary to define a parameter referred to as
effective temperature, in order to quantify the relationship
between variations in temperature and those in measured
muon rate.

The pion and kaon terms in Eq. 1 are derived from the in-
tegral over the atmospheric slant depthX (in g/cm2) of the
muon production spectrumPµ(Eµ, θ, X), which in turn is
given by the probability distribution for meson decay to
muons integrated over the parent meson spectrum [2].

The effective temperature as a function of muon energy
and zenith angle is defined as the actual temperature profile
weighted by the muon production spectrum

Teff (Eµ, θ) =

∫

dX Pµ(Eµ, θ, X)T (X)
∫

dX Pµ(Eµ, θ, X)
, (6)

wherePµ(Eµ, θ, X) is the sum of muon production spec-
trum from pion and kaon contributions. The rationale for
this definition is that the depth dependence of the muon
production spectrum weights the temperature with the re-
gions of the atmosphere where the meson decay to muons

Figure 1: The differential weighting function used in the
calculation of theTeff , as a function of atmospheric depth
X (continuous line), superimposed on the average atmo-
spheric temperature profile (dashed line).

occurs. The critical energies that appear in the production
spectrum are evaluated at the mean temperature,T◦, but
the production profile does not depend strongly on temper-
ature.

This formulation of the effective temperature differs from
that in Grashorn et al. [8], where the low energy limit of
the temperature derivative of muon production spectrum
produces an unphysical discontinuity. The IceCube obser-
vatory is located at a depth of>1.3 km.w.e./cosθ so only
muons with energies above about 400 GeV/cosθ can reach
and trigger the detector. At these energies muon decay and
energy loss in the atmosphere are negligible. This enables
us to use analytic forms for muon production analogous
to Eq. 1 without accounting for decay and energy loss of
muons in the atmosphere and hence to obtain a physically
correct result without any discontinuity.

To compare predictions with measurements it is necessary
to determine the convolution with the detector response
function

Teff (θ) =

∫

Eµ

∫

dX Pµ(Eµ, θ, X)Aeff (Eµ, θ)T (X)
∫

Eµ

∫

dX Pµ(Eµ, θ, X)Aeff (Eµ, θ)
,

(7)
where the denominator, as in Eq. 3, is the total measured
muon intensity. As for the correlation coefficient, the total
effective temperatureTeff is the weighted average of Eq. 7
over the event zenith distribution. Fig. 1 shows the dif-
ferential weighting function used in the calculation of the
effective temperature along with the average atmospheric
temperature profile over the seasons. It peaks at about 100
g/cm2, which is where most of the muons are produced.

3 Muon and Temperature Data

In this analysis we used 150 billion muon events col-
lected by the partially completed IceCube Observatory
from March 2007 to April 2011 (see [9] for an overview
on IceCube). These events are generated by cosmic rays
with median energy of about 20 TeV. 10
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Figure 2: The daily atmospheric temperature profiles over Antarctica produced by NASA AIRS instrument on board the
Aqua satellite [10] are shown from 2007 to 2011 (in color code), along with the relative modulation in the measured muon
event rate (black line) and the relative variation of the effective temperature (grey line). Note that the statistical uncertain-
ties in the data are between about 0.1 Hz (in 2007) and about 0.16 Hz (in 2011) on the daily rates. The corresponding
uncertainties on the relative rate variations are 0.02 % and 0.008 %, respectively.

The muon rate increased substantially over these four years
as new detectors were added during each construction sea-
son. As the instrumented volume increased, the probability
that one data record included two or more separate cosmic-
ray events increased from about 1% to about 4%. A cor-
rection to the daily recorded rate was therefore applied to
obtain a corrected rate of muon events,Rµ.

The atmospheric temperature profile data used in this anal-
ysis were collected by the NASA Atmospheric Infrared
Sounder (AIRS) on board the Aqua satellite. Daily atmo-
spheric temperatures at 20 different pressure levels from 1
to 600hPa above the South Pole were obtained from the
AIRS Level 3 Daily Gridded Product available on NASA
Goddard Earth Sciences, Data and Information Services
Center (GES DISC) [10]. Using these data the daily effec-
tive temperatureTeff was calculated based on the zenith-
weighted average of Eq. 7.

4 Results and Determination of K/π Ratio

Fig. 2 shows the measured∆Rµ

〈Rµ〉 as a black continuous line

along with ∆Teff

〈Teff 〉
as a black dashed line. The figure also

shows the actual atmospheric temperature profile as a func-
tion of pressure level (equivalent to atmospheric depthX).
The statistical uncertainties in the measured muon rate are
too small to show in the figure. Note that besides the large
seasonal modulation, the daily muon rate is strongly cor-
related with short time temperature variations in the upper
atmosphere.

Based on Eq. 5, the experimental temperature coefficient
was determined from regression analysis and found to be
αexp

T = 0.860± 0.002 (stat.)± 0.010 (syst.). The experi-
mental systematic uncertainty onαexp

T is dominated by the
effective areaAeff (Eµ, θ), which is used in the calculation
of the effective temperature and of the theoretical correla-
tion coefficient in Eq. 3. Most of the detected muons range
out within the large instrumented volume of IceCube, and

the energy profile of the effective area depends on the dis-
tribution of depths the muons reach within the array. The
spread on this distribution, translates into an estimated un-
certainty in the experimental correlation coefficient of 0.01.

Since the temperature correlation coefficient depends on
the relative contribution of pions and kaons, it is possible
to use the seasonal variations of the muon rate to determine
the K/π ratio.

The effective temperatureTeff is relatively insensitive to
variations in the cosmic ray spectral index, the proton at-
tenuation length, the critical energies and K/π ratio because
the dependence cancels to a large extent due to the normal-
ization in Eq. 7.

The theoretical correlation coefficientαth
T , on the other

hand, depends primarily on the critical energies and on the
K/π ratio. Changing the cosmic ray spectral index and pro-
ton attenuation length within a wide range, has an effect
smaller than 1%. Therefore it is possible to use the param-
eters for attenuation lengths and spectrum weighted mo-
ments from Ref. [2], assuming a cosmic ray spectral index
of -2.7. The critical energies evaluated at the average effec-
tive temperature ofT◦ = 211◦K are used.

In particular, the kaon to pion ratioRK/π = ZNK

ZNπ
de-

pends on the spectrum weighted momentsZNK andZNπ

of the cross section for a nucleon N to produce secondary
kaons and pions, respectively, from a target nucleus in the
atmosphere. The dependence on the spectrum weighted
momentsZNK andZNπ is implicit in the parametersAπµ

andAKµ in Eqs. 1, 3, 7.

The nominal value of K/π ratio is taken to be [2]

RK/π =
0.0118

0.079
= 0.149 ± 0.060, (8)

which is based on laboratory measurements below 100
GeV center of mass energy. The 40% uncertainty corre-
sponds to that in the current cosmic ray interaction mod-
els [11]. 11
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Figure 3: The preliminaryαexp
T determined by IceCube as

a function of the K/π ratio (continuous line), with its error
given by the band, and the predictedαth

T (dashed line) with
the corresponding error given by the band. The intersection
region between the two bands is atRK/π = 0.09± 0.04.

By calculating the theoretical correlation coefficientαth
T as

a function ofRK/π and comparing it with the experimental
value, it is possible to measure the kaon to pion ratio for
proton interaction with atmospheric nuclei (mainly nitro-
gen) at cosmic ray particle energy of 20 TeV.

Fig. 3 shows the experimental and theoretical values ofαT

as a function of K/π ratio for the IceCube data. While, as
mentioned above,αexp

T is almost insensitive toRK/π, the
value ofαth

T has a strong dependence. Since the statistical
uncertainties are very small, the band onαexp

T is dominated
by systematic uncertainties. The band onαth

T reflects the
theoretical uncertainties in the calculation of the correlation
coefficient mentioned above, and conservatively estimated
to be 1%. The crossover in Fig. 3 is atRK/π = 0.09± 0.04.
Fig. 4 shows a comparison of the IceCube measurement
with other observations.

5 Conclusions

Using 150 billion cosmic ray induced muon events col-
lected in four years by IceCube, a strong correlation of
the daily observed muon rate with the stratospheric tem-
perature was observed, along with a±8% annual modu-
lation. The K/π ratio at 20 TeV cosmic ray energies was
determined by comparing the observed temperature corre-
lation coefficient with the theoretical one, and found to be
RK/π = 0.09± 0.04.

The value obtained with IceCube implies thatZNK ∼
0.0071, which is about 40% lower than its nominal value
from Ref. [2]. In calculating the theoretical correlation co-
efficient the sumZNK +ZNπ was kept constant to its nom-
inal value 0.0908. One way to reconcile the measurement
of RK/π with other results is by reducing the amount of
associated productionpN → nK+. Keeping the nominal
value ofZNK− = 0.0028, while reducingZpK+ from its
nominal value of 0.0090 to 0.0043 is also likely to give a
better agreement with recent measurements of the ratio of
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Figure 4: A compilation of selected measurements of K/π
for various center of mass energies. Data points are from
NA49 [12, 13], E735 [14], STAR [15] and MINOS [5]. The
horizontal line and gray band represents the reference value
K/π ratio 0.149± 0.060 [2, 11].

the atmospheric muon charge ratio from MINOS [16] and
OPERA [17].
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Abstract: We study the lateral distribution function (LDF) of signals in the IceTop air shower detector as a function
of distance from the air shower core. The completed IceTop detector consists of 81 stations with two tanks each. It can
now study the signals at distances approaching 1 km from the core position. We discuss the general shape of lateral
distributions of the signal and its dependence on the shower zenith angle and primary mass. We also show the simulated
individual tank signal lateral distribution for a large number of simulated proton and iron showers. We find that the form
of the lateral distribution function used for more widely spaced arrays of water Cherenkov detectors, Haverah Park and
Auger in the EeV range, can also be used with appropriate parameters to describe IceTop data in the 10-100 PeV range.
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1 Introduction

IceTop, the surface air shower array above the IceCube
neutrino detector, was completed in the 2010/2011 deploy-
ment season. IceTop consists of 81 stations, each of which
has 2 tanks of area 2.7 m2 containing 90 cm of clear ice.
The average distance between the tanks in a station is 10 m
and the average distance between stations is 125 m. The
Cherenkov light generated by the charged particles that
hit the tanks is collected by two digital optical modules
(DOMs) that run at different gains to increase the dynamic
range. The signal strength is measured in vertical equiva-
lent muon units (VEM), i.e. the signal that a 1 GeV vertical
muon produces in the tank. A station triggers when there
are signals above the threshold (0.16 VEM) in both tanks
within one microsecond. In this way we avoid triggering
on coincidental muons that belong to different atmospheric
cascades.

The current shower reconstruction of IceTop events is
based on a procedure which was designed when the array
contained only 26 stations in a much smaller area [1]; the
reconstruction procedure is applied to showers that trigger
at least five stations. The signal lateral distribution func-
tion in this procedure does not include tanks with zero sig-
nal (i.e. tanks that do not trigger) and the fitting routine
accounts for these tanks with a separate, no-hit probability,
term in the likelihood function.

In this paper we instead use a lateral distribution function
of the form [2]

S(r) = A × r−(η+r/r0), (1)

where S(r) is the signal at a perpendicular distancer
from the shower core in shower coordinates;η, r0, andA
are fit parameters. This form has been used for Haverah
Park [3] and Auger [4] to fit showers observed with wa-
ter Cherenkov tanks. IceTop is at a much higher altitude
(2835 m) than HP (sea level) and significantly higher than
Auger (1400 m) and collects data in a different primary en-
ergy range with detectors spaced by 125 m as compared to
several hundred meters for HP and 1500 m for Auger. We
investigate here the extent to which the lateral distribution
form used for the other Cherenkov shower detectors scale
to the location and energy range of IceTop. Everywhere in
this paper, S(r) gives the signal strength at a perpendicu-
lar distance r from the shower core in shower coordinates.
We include tanks with and without a signal directly in the
lateral fit, both for simulated and observed air showers.

2 Monte Carlo Calculation

To study the lateral distribution we have simulated air
showers initiated by protons and iron nuclei with fixed pri-
mary energies of 10 and 100 PeV and fixed zenith angles
of 0, 25, and 45 degrees. Air showers are simulated with
CORSIKA-SIBYLL [5] and the detector simulation uses
Geant4 [6] for the tank response. 50 showers per primary

13
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Figure 1: LDF of the signal strengths (weighted by square
of the distance from core) for 100 PeV simulated proton
and iron showers at three zenith angles.
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Figure 2: Ratio of the signal strength in simulated iron to
proton showers for three zenith angles.

type, energy, and zenith angle were dropped on the IceTop
array 100 times each within a 600 meter radius from the ar-
ray center. As a result, there are 5,000 showers in each set.
The simulated showers were reconstructed with the current
standard procedure and all results presented below use the
reconstructed shower core position, direction, and shower
energy for event selection. Fewer than 200 showers in each
set were not reconstructed well and are not analyzed here.

Figure 1 shows the average LDF of the IceTop signals for
simulated proton and iron initiated showers at the three
zenith angles. As expected, the proton showers have higher
signals close to the shower core and iron showers have
higher signal density at large distances from the core1.
The intersection point of the proton and iron signals LDF
changes with zenith angle and increases significantly even
at the modest zenith angle of 45 degrees. The ratio of iron
to proton signal LDF is presented in Figure 2. While for
strictly vertical showers the intersection point is at about
50 m from the shower core; it is between 120 and 150 m
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Figure 3: The ratio of RMS of the signal to its strength in
simulated 100 PeV proton showers at three different zenith
angles.

away from the core forθ=25 degrees and above 300 m at
45 degrees. Furthermore, although not shown here, the in-
tersection point for 10 PeV showers is relatively larger for
each angle; it is around 130, 180, and 400 m forθ=0, 25,
and 45 degrees, respectively. The IceTop reconstruction
procedure currently uses the signal at 125 m,S125, from the
shower core as the energy-related parameter, which seems
to be mass independent for showers near the peak of the
angular response for IceTop (25 degrees) as the classical
papers of A.M. Hillas [7] recommend. However, as we see
in Figure 2 for IceTop, there is no single distance from the
shower core that is independent of mass for all energies
and angles. Minimizing the fluctuations is also desirable
in the choice of an optimum distancer used for energy as-
signment. Figure 3 shows the ratio of RMSS /S(r) for E =
100 PeV proton showers and the three angles. The signal
fluctuations are almost constant between 50 m and 150 m
from the shower core for all three angles. The fluctuations
are higher for the most inclined showers and still constant
below 150 m distance from the core. the goal is to apply
the lateral distribution function to experimental data which
may include a mixture of proton, iron, and several other
primaries. Therefore, it is instructive to look at the VEM
range of signals for a given primary energy for both proton
and iron together. As an example, we show in Fig. 4 the
signals measured by IceTop in 100 proton and 100 simu-
lated showers of primary iron nuclei. At distances around
100 m the signal variation is slightly larger than a factor of
two. At much larger distances, around 500 m, the signal
variation increases to more than one order of magnitude.
A fraction of these fluctuations is due to the fact that we
plot proton and iron induced showers together. There is a
strong increase in fluctuations for each species at distances
greater than 300 m, as shown in Fig. 3. Note also the rela-
tively small statistics at distances below 100 m.

1. Everywhere in this paper, distance from the core is the per-
pendicular distance from the core in shower coordinates.
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Figure 5: The average LDF of the signal strength for 100
PeV simulated iron showers at three zenith angles fitted
with the HP-like function.

3 Fitting the simulated signal LDF

Both HP and Auger have fitted their data with a lateral dis-
tribution function similar to Eq. 1r0 fixed. Here we fit the
average of the simulated showers at each energy with the
same form. As an illustration, the signal LDF of the simu-
lated 100 PeV iron showers and the fits obtained are shown
in Fig. 5. As expected, the lateral distribution becomes
flatter with angle. The parameterη is 2.22, 2.21, and 2.06
for 0, 25, and 45 degrees, respectively. The respectiver0

values are 1410, 1507 and 1783 m. The respective normal-
ization parameterA is7.18×106, 5.31×106, and1.25×106

VEM. Theχ2 values of all fits are smaller than 1 per degree
of freedom.

The fits of simulated proton showers have similar results.
The η values are 2.25, 2.22, and 2.10 for 0, 25, and 45
degrees, respectively. The respectiver0 values are 1215,

1280 and 1474 m. Whileη values are similar for proton and
iron showers, ther0 values are always significantly smaller
by about 200 m than those of iron showers. The respective
normalization parameterA is 8.58× 106 , 7.29× 106, and
2.02 × 106 VEM for proton showers.

One has to note that the fits are not very good for core dis-
tances less than about 50 m. The reason is that we are using
reconstructed position of the shower core. The average er-
ror in the core position is less than 20 m but this error still
affects the LDF at small distances in a negative way. The
statistics at small distances is also low. For these reasons
the measured or interpolated signal strengths at small dis-
tances are not reliable.

4 Fitting of individual showers

The next step in the study of the signal lateral distribution
function is the fitting of individual showers. We have at-
tempted to fit individual simulated and experimentally de-
tected showers with the function of Eq. 1. The fitting pro-
cedure is less stable when applied to individual showers
especially because there are usually few points at distances
smaller than 100 m from the shower core. This makes the
r0 parameter vary even more than in the case of average
lateral distribution from a large number of showers.

The well fitted showers, however, show a good agreement
between the experimentally detected and the simulated
showers. To compare these two sets of showers we chose
experimental showers with standard IceTop reconstructed
parameters very close to the simulated (fixed primary en-
ergyEp and zenith angleθ) ones. For vertical showers, for
example, we chose showers withcos(θ) ≥ 0.95 and with
1.97 ≤ log10(Ep/PeV) ≤ 2.03. Figure 6 shows the LDF
fit of a simulated proton (top) and an experimentally de-
tected shower (bottom). Both showers have a large number
of triggering stations - 48 stations in the simulated shower
and 46 in the experimental one. The experimental shower
shown in Fig. 6 is from 2010 when IceTop consisted of 73
stations (or 146 tanks). The tanks with ‘0’ signal are not
shown, but they are included in the average for each annu-
lar bin of r. In the graph of the experimental shower we
also show the average signal strength calculated in loga-
rithmic radial bins around the reconstructed shower core.

The fits have aχ2 of 0.6 p.d.f. However, the performance
of the fit will depend onχ2 distributions from fits on a rea-
sonable sample of showers; a detailed study is needed in
this regard.

5 Summary

We have studied the lateral distribution of air shower sig-
nals in IceTop tanks using a function similar to the one used
by Haverah Park and Auger Observatory. Tanks with sig-
nals below threshold are included as zeros in averaging the
signal in each radial bin. The simulated proton and iron
showers at 10 and 100 PeV can be described with lateral
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Figure 6: Example fits on two individual showers; both
showers are almost vertical (cos(θ)≥0.95) with energies
close to 100 PeV. Top: a simulated proton shower. Bot-
tom: experimentally observed shower.

distribution functions of the VEM signal having the same
form as those used by the Haverah Park and Auger Obser-
vatory. We have not studied the lateral distribution of sig-
nal at distances smaller than 50 m because the lateral dis-
tance and the uncertainty in the reconstructed core position
become comparable to each other; this results in a large
uncertainy in the signal at shorter distances. The LDF of
both iron and proton showers becomes flatter with increas-
ing zenith angle.

We also see, as expected, the flatter lateral distribution of
the simulated iron showers compared to that of the proton
showers. The highest ratio of the iron to proton LDF occurs
at distances more than 500 m from the shower core. We
also show the distance at which the relative signal strengths
of the signals from proton and iron showers are equal. the
crossover radius depends significantly on the shower zenith
angle and also on energy. For 100 PeV showers, it varies
between 50-150 m for zenith angles as large as 25 degrees,
and it is above 300 m at 45 degrees. For 10 PeV showers,
not shown here, it varies between 130-180 m for zenith an-
gles as large as 25 degrees, and it is above 400 m at 45 de-
grees. For a mass independent energy reconstruction in this
energy range, we will explore the possibility of scaling the

energy estimation reference distance, with the energy and
zenith angle of the shower using an iterative procedure. In
this regard, it is encouraging that, for showers in the peak
of the angular distribution for IceTop (θ ∼25 degrees) and
energies 10-100 PeV, the variation of the iron to proton sig-
nal ratio is around 1 and it has about 10% variation for the
reference distance range of 100-150 m. It is also encour-
aging that the signal fluctuations are almost constant in the
distance range 50-150 m.
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Abstract: The IceCube Neutrino Observatory was completed in the 2010-11 Antarctic season with 86 deep strings and
81 surface stations. Between June 2010 and May 2011 IceCube collected high quality data with 73 stations and 79 strings.
The performance of the detector as an air shower array to contribute to our understanding of the cosmic ray spectrum
from the knee region up to 1 EeV will be demonstrated. The sensitivity to primary composition using high energy muon
bundles seen by the IceCube array will also be discussed.
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1 Introduction

The IceCube Neutrino Observatory started taking data in
May 2011 with the complete array of 81 surface stations
and 86 strings in the deep Antarctic ice [1]. The array grid
is shown in Figure 1. In the period of June 2010-May 2011,
the surface air shower array, IceTop [2], was operated with
73 stations (146 ice Cherenkov tanks) positioned on a trian-
gular grid with a 125 m spacing. The IceCube detector had
79 strings with 60 sensors on each string at depths between
1450 m and 2450 m in the ice. We refer to this configura-
tion as IceTop-73/IceCube-79. The detector collected data
with 98% uptime during this period.

IceCube, located at the geographic South Pole (altitude:
2835 m), is at an optimum atmospheric depth of 680 g/cm2

where cosmic ray air showers in the PeV energy range are
close to their shower maximum. In addition, with fast dig-
ital electronics for signal processing and high resolution
waveforms, IceTop is in a unique position to make a de-
tailed measurement of the cosmic ray energy spectrum in
this energy region in a few years. About 30% of showers
trigger both detectors; these are called coincident events.
The energy deposited along the kilometer long tracks of
the penetrating muon bundles in IceCube, when combined
with the energy deposited on the surface in IceTop, provide
a mass composition sensitive measurement.

In this paper we evaluate the performance of IceCube as a
three dimensional Extensive Air Shower (EAS) array based
on nine months of data from June 15, 2010 to March 15,
2011. The data is split into an austral winter dataset (Jun
15, 2010 - Nov 1, 2010) and an austral summer dataset

Figure 1: The surface map of IceCube in its completed config-
uration. IceTop Stations 1, 7, 14, 22, 31, 79, 80 and 81 were not
yet deployed in 2010. The circle with a 400 m radius shows the
containment criterium for the reconstructed shower core position.
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(Nov 1, 2010 - Mar 15, 2011) to investigate the basic
shower observables and their temporal behaviour due to at-
mospheric changes. After minimal cuts the quality of the
reconstructed events already reaches an accuracy to probe
the inherent systematics left in data which may degrade the
energy resolution and thus need to be studied further.

This analysis uses the largest statistical data set which cov-
ers two austral seasonal conditions. Earlier analyses [3, 4]
did not account for atmospheric changes and could there-
fore not combine data of more than one season.

2 Reconstruction of basic observables

IceTop measures the Cherenkov light emitted by charged
particles passing through the tanks. The timing informa-
tion is used to reconstruct the arrival direction, while the
signal strength is used for the core position. The lateral
distribution of the energy deposition by each shower is fit-
ted to a function of the signal strength in Vertical Equiv-
alent Muons (VEM) versus distance to shower core. The
signal strength evaluated at 125 m from the reconstructed
shower core,S125, is found by simulation studies to be
sufficiently mass independent to primary energy for nearly
vertical showers [5]. For coincident events also the Ice-
Cube signals were used, together with a fixed reconstructed
core position at the surface, to fit the direction using a func-
tion which describes the muon bundle range-out [4]. This
improves the angular resolution [6] and will be used to re-
move unrelated IceTop/IceCube coincident events.
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2.1 Event selection

Air shower events which trigger at least five IceTop sta-
tions were reconstructed with the standard IceTop recon-
struction procedure [7]. The events were selected if the
reconstructed observables converged successfully, and the
core location was reconstructed within a circle of 400 m
radius from the IceTop array center as shown in Figure 1.
On average, the reconstructed event rate was 2.55 Hz with
a 12% variability due to the barometric pressure changes.

Events which trigger both the IceTop and the IceCube ar-
ray, but do not belong to the same air shower constitute
an important background for the coincident data sample.
These so-called random coincident events were cut based
on the time difference between the signals in IceTop and
the signals in IceCube. The zenith angle difference be-
tween IceTop and IceCube direction reconstructions was
also used to remove random coincident events. For a good
energy loss reconstruction in the deep ice, the muon tracks
which were not well contained by the detector volume (cor-
ner clippers) were not used in the final sample. This basic
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Figure 5:The weighted spectrum oflog
10
(S125) for the IceTop-

73 events withcos θ > 0.8 is shown for winter and summer
months by (blue) squares and (green) stars respectively. An expo-
nential function is fitted to the slope of the winter curve between
0.7 and 1.1 and extrapolated tolog

10
(S125) = 2.5 to guide the

eye.

set of cuts results in a high quality, well reconstructed data
sample with an angular resolution below 1◦ and a core res-
olution of about 10 m. The average IceTop-73/IceCube-79
coincident event rate after this selection was 0.72 Hz with
a 15% variability.

In total 34.8 million events were left in the IceTop-73 data
sample, while 9.5 million events remained in the coincident
data sample (for a livetime of 236.44 days).

2.2 Basic shower observables and their temporal
behaviour

Figure 2 shows the differential rate in cosine zenith angle
for both IceTop-73 events and IceTop-73/IceCube-79 coin-
cident events. The requirement that the muon bundle com-
ponent of the air shower must pass through the IceCube
detector leads to a steeper distribution for the coincident
events. The light (green) line is the rate in the austral sum-
mer season and the dark (blue) line shows the rate in the
austral winter season. The change in the atmospheric den-
sity profile [8] from winter to summer as well as the snow
accumulation of 21 cm on average during 2010 contribute
to the observed difference in rates between the two seasons.
The ratio quantifies the angular dependence of both atmo-
spheric and snow effects.

The differential rate oflog
10
(S125) is plotted for four

zenith angle bands of equal solid angle in Figure 3 in the
range where IceTop is fully efficient. The rate difference
observed between the different zenith bands is due to the
atmospheric attenuation. We could apply the classic Con-
stant Intensity Cut analysis by calculating the attenuation
for different zenith angles and evaluating the spectra at
one zenith angle. In this analysis the IceTop-73 events
were restricted tocos θ > 0.8 to study the atmospheric
effects within this narrow angular range. However, with
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Figure 6:The knee region of theS125 spectrum. A shift of 0.04
in log

10
(S125) is observed between the winter (blue circles) and

summer (red triangles) spectra.

high statistics it will be possible to use each zenith band as
a separate dataset to reconstruct and analyze with different
methods and further explore its mass composition sensitiv-
ity.

In Figure 4 the differential rates oflog
10
(S125) for the co-

incident IceTop-73/IceCube-79 events are presented. The
break seen in slope of the spectra aroundlog

10
(S125) = 0.4

is the cosmic ray knee.

To probe the details in the spectrum the rate weighted by
S1.7
125

for cos θ > 0.8 is plotted in Figure 5. It is inter-
esting to note the opposite behaviour of the high and low
energy events in different atmospheric conditions, causing
a change in the slope. The spectra show a hardening trend
between1.2 < log

10
(S125) < 2.1. This systematically

significant feature could not be traced back to any anomaly
in data and is also seen by previous analyses [3, 4].

The knee position changes by 0.04 inlog
10
(S125), from

0.44 in summer to 0.40 in winter as shown in Figure 6. As
the knee position should be at the same primary energy,
the conversion fromS125 to primary energy will need to
take into account that the atmospheric variation and snow
accumulation changes the detector response for the same
primary energies.

From an energy estimator, which was derived by simula-
tions of proton showers,log

10
(S125) = 1 corresponds to

about 10 PeV,log
10
(S125) = 2 to about 100 PeV, and

log
10
(S125) = 2.7 to about 1 EeV. From Figures 3 and 4,

the measured rates indicate that about 150 events per year
are measured by the three dimensional IceCube air shower
array above 300 PeV and about 15 events above 1 EeV.
There is also no indication of array saturation up to 1 EeV.
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by IceCube, shows a strong correlation with the shower size, re-
constructed by IceTop, up to the highest cosmic ray energies.

3 Sensitivity to primary composition

When EAS propagate through the South Pole ice layer,
only narrow (∼20 m) bundles of highly energetic muons
(>500 GeV) survive to the depth of IceCube. They will
lose energy mainly stochastically which then generates
Cherenkov light detected by IceCube. Here the average en-
ergy loss of muon bundles at the center of the IceCube de-
tector volume is reconstructed using the measured charge
signals and taking into account light propagation and the
ice properties [9]. The energy loss of a muon bundle is a
convolution of the muon multiplicity, the muon energy dis-
tribution within the bundle and the single muon energy loss.
Both the multiplicity and the energy distribution depend
highly on the primary mass and energy. Thus, the muon
bundle energy loss provides a composition sensitive ob-
servable and can be determined with a resolution of about
0.3 in log

10
of dE

dX
[9].

In Figure 7, nine months of high quality coincident data
is shown. There is a clear correlation between the IceTop
energy sensitive observable,S125, and the energy loss up
to the highest energies. Also, the shape of the distribution
becomes narrower for higherS125 (larger showers). From
simulations we know that proton and iron distributions be-
come well separated in energy loss as function of primary
energy [6]. The narrower distribution could therefore be re-
lated to a change in composition and will be studied further
by simulations.

Events with a relatively low energy deposition in IceCube
and no correlation with the IceTop shower size form the
main background at this basic level of cuts as these are
mainly caused by remaining random coincident events.
However with minor cuts this is already reduced to the
∼1% level and will be further reduced in the next stage
of the analysis.

4 Summary/Outlook

In this paper the performance of IceCube as a three
dimensional cosmic ray detector was investigated using
nine months of high quality data from June 15, 2010 to
March 15, 2011 when the IceCube detector was in its 73-
station/79-string configuration. We studied the behaviour
of the basic observables in two distinct atmospheric con-
ditions with the data split as austral winter and summer
sets. We observed the change induced on the lateral de-
velopment of showers by the atmospheric effects and snow
accumulation, and a shift of 0.04 inlog

10
(S125) around the

cosmic ray knee region between the two datasets. This ob-
servable effect on the shower development will be studied
in detail. We observed that the high and low energy show-
ers are affected by the seasonal effects in opposite way,
having a higher rate of high energy showers in the aus-
tral summer atmosphere than in winter. TheS125 spec-
tra shows a systematically significant hardening between
1.2 < log

10
(S125) < 2.1. The cause of these effects,

whether due to a change in shower maximum, change in
the energy spectrum or a change in mass composition, will
be the subject of further studies.

The observed zenith angle dependence of EAS and the sea-
sonal expansion of the atmosphere can be used for compo-
sition studies. For coincident IceTop/IceCube air showers
the composition sensitive ratio of muon bundle energy loss
to shower size at the surface as well as the width of the
energy loss distribution is being exploited.

A few years of cosmic ray data will already provide enough
statistics to accurately measure cosmic ray energy spectrum
and composition up to 1 EeV by using multiple composi-
tion and energy dependent shower observables through dif-
ferent techniques such as neural networks [4].
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Simulation of IceTop VEM calibration and the dependency on the snow layer

THE ICECUBE COLLABORATION1
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Abstract: Seven years of construction on the IceTop air shower array have culminated in the final detector setup
of 162 ice-filled tanks. The tanks are paired as stations over an area of one square kilometer. A continuous and
automatic procedure calibrates each tank via the extraction of the vertical equivalent muon peak in the tank charge
spectrum. Over the years snow has drifted unevenly on top of the tanks. The overburden of snow influences the
charge spectrum as the electromagnetic part of an air shower is attenuated more than the muonic part. The impact on
individual tanks affects trigger rates and the air shower event structure. We will present tank response studies with Monte
Carlo simulations and compare them to measured IceTop charge spectra in light of the varying thickness of the snow layer.
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1 Introduction

IceTop is the cosmic ray surface detector of the IceCube
Neutrino Observatory [1], which is located at the South
Pole and was completed in March 2011. The final setup
consists of 162 tanks paired in 81 stations on a hexagonal
grid with horizontal separations of about 125 m. The ar-
ray covers an area of one square kilometer at an altitude
of 2835 m above sea level, which is equivalent to an aver-
age atmospheric depth of 680 g/cm2. The location together
with the geometry and the applied trigger settings make
the array sensitive to cosmic rays with energies between
100 TeV and 1 EeV.

An IceTop tank acts as a calorimeter, converting energy
deposited by charged relativistic particles into Cherenkov
light. The reconstruction of air shower observables such as
space angle (zenith and azimuth), core location (x and y)
and shower size relies on a good understanding of the light
signals in the individual IceTop tanks. A natural way to
calibrate and simulate tanks with their individual responses
is to use the reference signal - vertical equivalent muon
(VEM) - that high energy vertical muons imprint in the
charge spectra of each tank.

A schematic of an IceTop tank is shown in Figure 1. The
tank is a cylindrical polyethylene vessel 186 cm in diam-
eter and 130 cm in height covered with insulation. The
walls are 6 mm thick and the inner part is covered with
4 mm thick diffusely reflective liner of Zirconium1 fused
polyethylene. Each tank is initially filled up to a height
of about 90 cm with purified water. Afterwards the water

freezes via a controlled top-to-bottom procedure that lasts
for about 40 to 50 days. To minimize impurities or contam-
ination and cracks in the ice during the freezing process,
a degasser system in combination with a circulation pump
extracts air, swirls the water slowly around and removes ex-
cess water. At the top of the ice volume, two Digital Opti-
cal Modules (DOMs) are mounted to record the Cherenkov
light pattern created by through-going and stopping parti-
cles. A DOM [2] is an ensemble of a photomultiplier tube
(PMT) and digitising, communication and operation elec-
tronics inside a glass pressure sphere. In data taking mode
the two PMTs inside one tank operate at a different voltage
setting, enlarging the dynamic range in linear pulse charge
assignment. Moreover, in case one DOM in a tank fails, the
tank is not lost in further physics analysis. The ice surface
and the two DOMs are covered with perlite, a volcanic ash,
that acts as an insulator and prevents light from entering the
ice volume and triggering the PMTs.

The tanks are embedded in snow until the snow level equals
the surrounding surface. So at installation there is only
snow on the sides, but winds blow snow on top of the tanks.
Each year some tanks accumulate up to 30 cm of snow on
top while others are still in the original setup without a
snow layer. This leads to an asymmetry in the behavior
of the array and needs to be understood via data and Monte
Carlo comparisons.

1. Note that this is true for 150 tanks. The first 8 installed tanks
in the year 2005 and 4 out of 16 tanks installed in the year 2010
are different and contain a Tyvek bag that acts as a reflector.
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Figure 1: Schematic of an IceTop tank with its dimensions
and its most important components. The trench where the
tank is installed is backfilled with snow. Winds bring in
snow that can accumulate on top of the tank.

2 Calibration

A good handle to study tank dependencies is to use the
tank charge spectrum that is naturally generated by the very
abundant low energy primary proton showers. Secondary
muons within the 1 GeV to 10 GeV energy region leave a
very clear and distinguishable signal behind in the tanks.
The technique was used to calibrate the water tanks in the
Auger experiment [3],[4] and it is also in use in IceTop [5]
since 2005. An example of a charge spectrum (expressed
in number of photo-electrons (PE)) of one single tank can
be seen in Figure 2. The data was recorded between the
15th and the 22nd of January 2011. The overall spectrum
is fit by the sum (solid) of a signal part (dashes) attributed
to muons and a background part (dots) generated by elec-
trons, positrons and gammas. The exact formula [6] reads:
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Figure 2: This is an experimentally measured charge spec-
trum of DOM 61-61 running in calibration mode. The total
fit (solid) is the sum of the muon (dashed) and electromag-
netic (dotted) contributions. The three extra lines visualize
the positions given by the legend.
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Figure 3: This histogram represents the VEM values of all
the 146 (high gain) DOMs running between the 15th and
the 22nd of January 2011. The lines visualize the mean
and the root mean square region.

f(x) = p0

(

1.85

p1

1

exp(x−p1

p2

) + 1
+ L(x, p1, p2)

)

+ p3 · exp(p4 · x) ,

where the first term in the summation describes the muon
part: on its own a sum of a step function that describes cor-
ner clipping muons and L(x,p1,p2) a Landau function with
p1 the most probable value andp2 a scale parameter that
describes the bulk of through-going muons. So the signal
part describes muons of all energies and incoming direc-
tions. Muon telescope measurements have pointed out that
vertical muons build up charges around 95 % of the overall
muon peak. The last term in the equation describes the ex-
ponential electromagnetic contribution. The three dashed
vertical lines visualize the position of the valley, the muon
peak and the 1 VEM unit.

Since June 2009 all the tanks of the IceTop detector are cal-
ibrated via an automated online procedure based on the fit
described above. The muon calibration data is collected si-
multaneously with the physics data and hence both DOMs
are evaluated at their running2 gains. The calibration data is
taken via a dedicated trigger that records every 8192nd hit
per (high gain) DOM that is not in local coincidence with
the other tank in the same station, i.e. there was no activity
in the other tank within a short time window of 1µs.

Each IceTop tank responds in an individual way to air
shower particles due to small differences in size, ice qual-
ity, liner reflectivity, snow coverage and interfaces between
the ice and DOM, the ice and the liners, the ice and the
perlite and the ice and the degasser. The size of the ice
block is important as more/fewer photons will be generated
for longer/shorter tracks. Reflectivity and transmission will

2. In the old method calibration was performed on a different
set of data where both DOMs were adjusted to the same gain.
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depend on the amount of impurities and cracks in the ice,
the quality of the liner and the interface between the ice
and the surrounding material. The snow on top insulates
the tank and so the PMTs in different tanks operate at dif-
ferent temperatures and hence gains. Snow also blocks the
low energy electrons, positrons and gammas and so the en-
ergy threshold differs. Figure 3 shows the variety in PE per
VEM for the 146 (high gain) DOMs operational between
January 15th, 2011 and January 22nd, 2011. The average
number is about 123 PE per VEM with a root mean square
of 23 PE per VEM. The outliers with higher values belong
to tanks lined with the higher reflectivity Tyvek.

3 Simulated VEM Spectrum

The VEM spectrum is the result of the convolution of two
components: the ground particles created in air showers
and the detector response for each of the particles. The air
showers in this study are produced via CORSIKA (v6900)
[7]. The high energy hadronic interactions are treated via
SIBYLL (2.1) [8] while the low energy interactions are
taken care of by FLUKA (2008) [9]. The transition be-
tween the models is set at center of mass energy of 80 GeV.
The electromagnetic interactions are treated via EGS4 [10]
parametrisations. The detector response to each particle
is simulated via the official IceTray software [11] of the
IceCube Collaboration. The IceTop tanks are modeled in
a GEANT4 [12] environment that also tracks the ground
level particles. The amount of Cherenkov photons that
are generated inside the optical volume is used to assign
the measured number of photo-electrons. The DOMs allo-
cate a charge via an experimentally measured single photo-
electron charge distribution.

The air showers are generated according the following
conditions: only protons are assumed; the zenith angleθ
ranges from 0 to 89 degrees and the azimuth angle from 0
to 360 degrees. The azimuth angle is sampled uniformly
while the zenith angle is sampled from a cos(θ) sin(θ) re-
lation, the flat detector approach. The lowest triggering
primary energy is given by the minimum amount of en-
ergy needed to create a muon in the atmosphere that can
possibly arrive at the surface. At the South Pole this en-
ergy is about 3 GeV. The high energy limit is restricted
by the calibration trigger condition that deletes hits from
the calibration stream when there is activity in the nearby
tank. Simulations point out that the upper limit is situated
around 30 TeV. Moreover, Figure 4 shows that it is suffi-
cient to simulate up to 10 TeV as the integrals of the muon
spectra saturate. The x-axis is expressed here in units of
VEM/0.95, so that the muon peak is situated at one. In
the threshold region[0;0.4] the highest energies contribute
a bit more than in the muon peak region[0.8;1.2]. This is
also visible in Figure 5 where the integrals of the former
spectra are shown as a function of the maximum energy in
the dataset. Between 10 TeV and 30 TeV the integral in-
creases about one to two percent, see therefore the solid
line. The other markers give the integrals for the intervals
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Figure 4: Different simulated muon spectra (weighted to
E−2.7) where the maximum energy that has been simulated
changes. From bottom to top the maximum energy goes up
between 100 GeV and 30 TeV as written in the legend.

log10(E_max/GeV)
2 2.5 3 3.5 4 4.5

n
o

rm
al

is
ed

 in
te

g
ra

l o
f 

th
e 

sp
ec

tr
u

m

0

0.2

0.4

0.6

0.8

1

Figure 5: The same as Figure 4, but here the integrals of the
muon spectra are plotted as a function of the maximum en-
ergy Emax used to build up the muon spectra. The solid line
represents the whole integral. The dashed, dotted, dash-
dotted lines are the integrals in following intervals[0;0.4],
[0.4;0.8] and[0.8;1.2].

[0;0.4] (squares),[0.4;0.8] (triangles) and[0.8;1.2] (inverse
triangles).

The VEM spectrum technique is used to calibrate the air
shower simulations for high energy analysis. The simu-
lated charge signals are calibrated in VEM units such that
the simulated calibration muon peak is at the same posi-
tion as in the corresponding experimental calibration data.
The simulations perform well. All systematic checks com-
pleted and listed in Table 1 exhibit a stability in the 1 VEM
position within two to three percent. The first (second) col-
umn gives the shifts of the 1 VEM position for simulations
weighted to E−2.4 (E−2.7). The checks included tests on
stability of random numbers, hadronic interaction uncer-
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Check E−2.4 E−2.7

different seeds 0.2% 0.5 %
July vs January atmosphere1.6% 2.7 %
SYBILL vs QGSJET01c 0.7% 2.9 %
10 cm to 200 cm of snow 0.4% 0.7 %
different tanks/DOMs 1.5% –

Table 1: Results of systematic checks for the shift of the
muon peak and according 1 VEM position due to a vari-
ety of effects listed. Two primary energy weightings are
presented.

tainty, daily variations of the atmosphere, the accumulation
of snow and the differences of all (high gain) DOMs.

4 Snow Dependency

Over the years, snow drifts unevenly on top of the tanks.
As can be seen from Figure 6, the overburden of snow in-
fluences the charge spectrum as the electromagnetic part
[0;0.75] of an air shower is attenuated more than the muonic
part [0.75;1.25]. The ratio (S/B) between integrals of the
muonic (M(h)) and the electromagnetic fit (EM(h)) in Fig-
ure 2 and expressed in the following formula:

(S/B)(h) =

∫ 2.0VEM

0.3VEM

M(h)/

∫ 2.0VEM

0.3VEM

EM(h) ,

is a function of snow depth h. This is shown in Figure 7.
The markers represent simulations where the primary en-
ergy is weighted via different differential spectral indices.
The dotted and dashed lines are extrapolations to indices of
-2.6 and -2.7 respectively. Direct weighting to these more
realistic values of the differential spectral indices was not
possible due to low statitics and large fluctuations. In com-
parison the experimental relation is given by the solid line
which shows a bit stronger dependency on the thickness of
the snow layer.

5 Summary

The VEM spectrum can be efficiently generated with an
uncertainty of 2-3%. This leads to an absolute charge cal-
ibration in simulation. The snow dependency of the signal
to background (muon versus electromagnetic) ratio in ex-
perimental data is slightly stronger than the one found in
simulated data and has to be further investigated.
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Abstract: While the primary purpose of IceCube is the search for high-energy astrophysical neutrinos, the overwhelming
majority of events is caused by downgoing cosmic-ray induced muons. This provides a high-statistics data set which can
be used for both detector calibration and supplemental physics investigations. In this work, we present a method to
identify TeV-scale catastrophic energy losses along muon tracks and its application to the separation of single high-
energy muons from large-multiplicity bundles which dominate the event sample above the horizon at high energies. The
information can be used to derive the single-muon energy spectrum at all zenith angles up to energies of hundreds of
TeV. We demonstrate that our measurement is sensitive to a cutoff of the proton spectrum at the cosmic ray knee and
potentially to the prompt lepton flux caused predominantly by decay of charmed hadrons in atmospheric CR interactions.
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1 Introduction

In recent work on high-energy atmospheric muon fluxes, it
was pointed out that second-generation astrophysical neu-
trino detectors such as IceCube should be able to substan-
tially extend the energy range of muon energy spectrum
measurements and hence address various important open
problems in cosmic-ray physics. These include verifica-
tion of hadronic interaction models, primary composition
at PeV energies and prompt contributions to the lepton flux
[1].

From an experimental perspective, the main challenge in
the measurement of the muon energy spectrum is limited
spatial resolution due to the sparse instrumentation of the
detector. With a minimum separation of 17 meters between
Digital Optical Modules (DOMs) in IceCube, resolution of
individual muons within a shower is usually impossible.
Previous measurements [2, 3] took advantage of the shorter
range of large-multiplicity muon bundles compared to in-
dividual high-energy muons during passage through matter
to measure the muon spectrum at large slant depths near
the horizon. The limited angular resolution of the detec-
tor and background from up-going atmospheric neutrinos
mean that the range of this technique is limited to values
up to approximately 100 TeV. Furthermore, the muon spec-
trum can in this way only be measured in an angular region
where the relative contribution from prompt interactions is
lowest, excluding investigation of this flux component for
practical purposes.
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Figure 1: Probability for a stochastic loss above a given en-
ergy to occur within the detector volume, for three typical
muon energy ranges. The simulation was performed using
MMC [5].

In order to take advantage of the full potential of a large-
volume detector, it is therefore necessary to develop a
method that allows separation of showers with exception-
ally highly energetic muons from the dominant background
of bundles containing low-energy muons of higher mul-
tiplicity. It has long been proposed to make use of the
fact that the stochasticity of energy deposition along muon
tracks increases with energy [4]. In this analysis, by iden-
tifying muon track segments with unusually strong photon
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Figure 2: Left: Average number of photo-electrons registered in IceCube DOMs as a function of perpendicular distance
from reconstructed muon tracks for three different depth bins. Values are averaged over events with a total chargeQtot >
1000 p.e. Right: Value of scattering parameterλexp from fitting distributions on the left to Eq. 1 in dependence of vertical
depth. The value ofzDOM = 0 corresponds to the center of the IceCube array, located 1950 meters below the surface
of the ice. The effective scattering length in two different ice models [6] is included for comparison. It is important to
note that the physical meaning ofλeff andλexp is not identical. Fine structures in the depth dependence are inherently
smeared out in the experimentally derived parameter.

emission, the amplitude of individual stochastic losses can
be used to infer the most likely energy of the parent muon,
as illustrated in Figure 1.

2 Energy Estimation Method

The IceCube detector array records Cherenkov photons
emitted by relativistic particles during passage through ice.
The amount of charge in the optical modules provides
calorimetric information that can be used to calculate the
energy released in the event.

Previous energy reconstructions relied on prior assump-
tions about ice properties whose accuracy was necessarily
limited. The method described here is based exclusively
on experimental observations. Its is based on two simple
assumptions:

• Down-going tracks in IceCube consist mainly of
muon bundles dominated by minimum-ionizing
muons which lose their energy smoothly and contin-
uously.

• The total number of emitted Cherenkov photons is
in good approximation proportional to the deposited
energy.

As illustrated in Figure 2, the total amount of light regis-
tered in the DOMs can then be approximated by the empir-
ical function

dE(x = x0)

dx
∝ Q(x0) · d(x0) · exp

(

d(x0) − 25

λexp(x0)

)

(1)

wheredE(x)
dx

is the energy loss at vertical depthx, Q is the
total charge in each DOM andd is the perpendicular dis-
tance between a DOM and the reconstructed muon track.

This data-derived model only relies on a single scattering
parameterλexp, which varies in dependence of the local
ice properties. From the charge in each DOM, it is possi-
ble to calculate a value that is approximately proportional
to the energy deposited in its vicinity. Monte-Carlo simu-
lated data are only required to determine the proportional-
ity factor in Eq. 1 and for verification. Assuming point-
like isotropic emitters on the track, clusters of exception-
ally high values can be used to identify energetic stochastic
energy losses. An example can be seen in Figure 3.

There are two important additional benefits that arise natu-
rally from this technique. The first is the reduction of biases
resulting from uncertainties about exact ice properties, al-
lowing for detailed investigation of simulation biases. The
other is the availability of information about differential en-
ergy deposition, permitting the construction of more accu-
rate event energy estimators.

3 Analysis Procedure

This analysis was based on data from IceCube in its 59-
string configuration (IC59). Only events with a total of
more than one thousand photo-electrons registered in the
detector were considered. This selection provides a sam-
ple of events at all zenith angles which is not biased by the
quality criteria used to select physics filter streams.

The analysis procedure itself mainly consists of two rela-
tively simple steps. First, a sample of muon tracks with
strong stochastic losses inside the detector volume were
identified. Then, the energy of the strongest single energy
deposition was reconstructed and its spectrum compared to
various benchmark models.

The principal conditions that were imposed in the selection
are:
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• Presence of a well-reconstructed muon track with a
length of at least 600 meters inside the detector vol-
ume.

• A peak energy loss value in a 50-meter bin along the
track which exceeds the median differential energy
loss in the event by a factor of 10.

• Location of peak energy loss within 150 meters from
at least 50 DOMs, assuring containment within the
main detector volume.

Figure 4 shows the cumulative effect of the cuts.

So far, the effective threshold energy for stochastic losses
lies around 10 TeV. It is in principle possible to reduce this
threshold further by relaxing the requirement on the total
recorded DOM charge.

4 Result

To estimate the sensitivity of the method, the measured en-
ergy spectrum of stochastic losses was compared to simu-
lations based on various primary composition models [7]:

• Constant Composition: The spectrum of each pri-
mary nucleus type changes by the same amount at an
energy corresponding to the cosmic-ray knee.

• Rigidity-Dependent Cutoff: Each component of
the cosmic ray flux is subject to a cutoff at an energy
that is proportional to the charge of the nucleus.

• Mass-Dependent Cutoff: Similar to the previous
model, but assuming a cutoff dependent on the nu-
clear mass. The main distinction here is a sharper
transition, resulting in a stronger cutoff signature.

• No Knee: This additional model was included for
purposes of illustration only, assuming unbroken
spectra for each component and therefore completely
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eliminating the knee. It should be noted that this as-
sumption is strongly disfavored by previous experi-
mental results.

Figure 5 shows the preliminary result, based on a subsam-
ple of 10 percent of the data taken with IC59. For models
incorporating a cutoff in the individual primary spectra, a
corresponding effect can clearly be discerned in the simu-
lated muon-induced stochastic losses. The limited exper-
imental statistics do not yet allow any definite statement
about preferred models, even while neglecting systematic
uncertainties.
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Figure 5: Comparison of reconstructed maximum stochas-
tic loss energy for simulated and experimental data
summed over all zenith angles. All simulated curves were
obtained by reweighting the same data set generated with
CORSIKA. Experimental data correspond to a subset of ten
percent of IC59 events. The error band is purely statistical.

5 Conclusion and Outlook

As can be seen from comparing Figures 5 and 6, the highest
muon energy found in the analyzed sample is most likely
located around 500 TeV, with slight variations depending
on the exact primary spectrum. This means that despite the
fact that the spectrum falls off almost as the fourth power
of the particle energy, the range of the measurement can
be extended by roughly an order of magnitude compared
to earlier experiments. The method presented here further-
more allows the measurement of cosmic-ray induced muon
spectra independently of the zenith angle, introducing an
entirely new degree of freedom.

Consequently, it will be possible to address a variety of new
physics issues that were previously inaccessible. It has al-
ready been demonstrated that the behavior of cosmic rays
around the knee can now be probed directly. A separate but
equally important question is the contribution of prompt
production processes to lepton fluxes at high energies. In
optimistic models, the charm-induced component becomes
dominant around 300 TeV at near-vertical angles [8] and
would therefore be directly measurable. If on the other
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Figure 6: Relation between reconstructed cascade and
muon surface energy obtained from Monte-Carlo simula-
tion, assuming a poly-gonato primary spectrum and neglec-
tic prompt muons. The change in slope around 10 TeV can
be attributed to threshold effects.

hand the prompt muon flux were low enough to be dom-
inated by decays of unflavored light mesons [9], it should
be possible to set a stringent limit that would strongly con-
strain the atmospheric neutrino background in searches for
astrophysical sources.

It should also be emphasized that the method to distinguish
unusually energetic muons from large-multiplicity back-
ground events is readily adaptable for analyses targeting
neutrino fluxes at energies in the PeV range.
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Abstract: Muons with a high transverse momentum (pT ) are produced in cosmic ray air showers mostly via semileptonic
decay of heavy quarks and the decay of highpT kaons and pions in jets. These highpT muons have a large lateral
separation from the shower core and accompanying muon bundle. IceCube, a kilometer-scale neutrino telescope
consisting of an array of photodetectors buried in the ice of the South Pole and a surface air shower array, is well suited
for the detection of highpT muons. The surface shower array can determine the energy, core location and direction of
the cosmic ray air shower while the in-ice array can do the same for the highpT muon. This makes it possible to measure
the cosmic ray muon lateral separation distribution at distances greater than 200 meters. The preliminary results from
analysis of data from 25% of the full IceCube detector will be presented.
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1 Introduction

IceCube, a kilometer-scale neutrino telescope, is well
suited for measuring the lateral separation of muons in cos-
mic ray air showers. Completed in December 2010, it con-
sists of a 1 km3 array of optical sensors (digital optical
modules, or DOMs) buried deep in the ice of the South Pole
and a 1 km2 surface air shower array called IceTop. IceTop
has an energy threshold of 300 TeV and can reconstruct
the direction of showers with energies above 1 PeV within
∼1.5◦ and locate the shower core with an accuracy of
∼10 m [1]. The in-ice DOMs (here referred to as IceCube)
are buried in the ice 1450 m under IceTop on kilometer-
long strings of 60 DOMs with an intra-DOM spacing of
17 m. IceCube can reconstruct high quality tracks of high
energy muons with< 1

◦ accuracy. IceTop and IceCube can
be used together to select cosmic ray events with a muon
with a minimum lateral separation of∼200 m. The mea-
surement of the lateral separation distribution of muons in
air showers provides a valuable check on air shower sim-
ulation models and can be used as an independent method
for determining the cosmic ray composition [2].

The most common source of muons with a large lateral sep-
aration is muons with a high transverse momentum (pT )
primarialy from charm and bottom mesons and jets of high
pT partons [2]. The transverse separation is given by:

dT =
pT hc

Eµ
(1)

whereEµ is the energy of the highpT muon, andh is the
interaction height of the shower, here taken as an average
value of 25 km. The interaction height loosely depends on
the composition and a full treatment of this is planned in the
future. Using a separation of 200 m (75 meters more than
the string separation) as a rough threshold for the two-track
resolution distance of the highpT muon from the shower
core gives a minimum resolvablepT of 8 GeV/c for a 1 TeV
muon. Rough calculations predict on the order of tens of
highpT muon events in the studied data sample [2].

The combined acceptance for cosmic ray air showers that
pass through both IceTop and IceCube is 0.3 km2sr for the
full 86-string IceCube array [3]. By the end of the austral
summer of 2006/2007, 22 IceCube strings and 26 IceTop
tanks had been deployed. The combined acceptance for
showers that trigger both IceTop-26 and IceCube-22 is 0.09
km2sr. In 2007 the discriminator threshold settings for Ice-
Top were changed partway through the year to sub-optimal
values, so this analysis discards the data taken during this
period leaving 114 days of livetime. A search has been
conducted in this data for cosmic ray events with a muon
with a large lateral separation.

The underground muon detector MACRO has previously
measured the separation between muons in air showers for
shower energies ranging roughly from 104 GeV to 106 GeV
[4]. MACRO measured muon pair separations out to a dis-
tance of about 65 meters. They verified the linear relation-
ship betweenpT and separation shown in Eq. 1 (with a 29
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Figure 1: Zenith angle resolution of the highpT reconstruc-
tion algorithm. The sigma are the results of Gaussian fits
to the distributions.

small offset due to multiple scattering of the muons) out to
momenta up to 1.2 GeV/c.

2 Reconstruction Methods

High pT muons appear as a separate track coincident in
time and parallel with the track from the central core of low
pT muons. Generally the bundle of lowpT muons leaves
more light in the detector than the highpT muon.

Current reconstruction algorithms in IceCube are designed
to reconstruct single tracks. In order to reconstruct high
pT double-track events the hit DOMs (i.e. DOMs that de-
tect at least one photon) are attributed to either the muon
bundle or highpT muon based on their timing and posi-
tion. The muon bundle is reconstructed first by the IceTop
surface array. This reconstruction serves as a seed for a
likelihood-based reconstruction using the IceCube DOMs.
Only IceCube DOMs within 90 m of the seed track are
used for bundle reconstruction. The highpT muon hits
are selected relative to the reconstructed bundle track. The
high pT muon arrives at the same time but laterally sepa-
rated from the bundle, so its hits will have a negative time
residual relative to the bundle reconstruction. Additionally,
high pT muon hits are required to be at least 90 m from
the reconstructed muon bundle track. The highpT muon
hit track is reconstructed using a likelihood reconstruction
with a downgoing hypothesis.

Figure 1 shows the performance of this procedure after re-
construction quality selection criteria have been applied.
The zenith angle resolution for groups determined using the
true simulation information (black, solid lines) is compared
to the resolution for groups determined using the splitting
algorithm (red, dashed lines) for the muon bundle (top) and
highpT muon (bottom). Roughly 50% of the events fail to
reconstruct because there are not enough DOMs in one of
the groups.

These reconstruction algorithms achieve a zenith angle
(space angle) resolution of 0.6◦ (1.3◦) for the muon bundle
and 2.6◦ (8.2◦) for a highpT muon separated by 200 m.

The resolution is worse for the highpT muon because
fewer DOMs are hit. While highpT muons with a greater
separation are much easier to resolve with the two track al-
gorithm, they also tend to be lower energy (see Eq. 1) and
hit fewer DOMs. The average number of DOMs hit by the
high pT muon is 15, compared to 90 for the muon bun-
dle. Additionally, because highpT muons have fewer hit
DOMs, a DOM hit by the muon bundle that is incorrectly
placed in the highpT group has a much larger effect on
the reconstruction of the highpT track (it can also degrade
the bundle resolution, but to a lesser extent). These factors
degrade the resolution of the highpT track direction and
timing. The spatial resolution of the highpT muon track
(as measured by the difference between the reconstructed
track and the true track at the point of closest approach to
the detector) is 40 m in x, y, and z.

3 Signal and Background Separation

Since highpT muons occur in only a fraction of simulated
showers, a toy model based on CORSIKA [5] proton show-
ers was used to model the signal. A single muon is inserted
into an existing CORSIKA event containing a muon bun-
dle from an air shower. This modified shower is then run
through the standard IceCube propagation, detector sim-
ulation, and reconstruction routines. Simulations insert a
muon with energy of 1 TeV separated 100, 150, 200, and
400 m from the shower core.

Cosmic ray air showers that do not generate a highpT

muon (called ‘single muon bundles’) are a background to
this search. Since they generate only one track in the ar-
ray, these events are mostly eliminated by requiring there
be two well-reconstructed tracks in the IceCube detector.

The IceCube 22-string configuration is large enough that
the rate of simultaneous events from cosmic rays is signif-
icant. Muon bundles from two (or more) air showers can
strike the array within the 10µs event window, producing
two separated tracks. These so-called double-coincident
events are another background for air showers with high
pT muons. Since these double-coincident events are un-
correlated in direction and time, requiring that both recon-
structed tracks be parallel (within 15◦ of each other) and
occur within±600 ns can eliminate most of these events.
However, an irreducible background remains from double-
coincident events that happen to come from roughly the
same direction and time. The rate of double-coincident
events can be estimated by looking at the off-time rate of
events (i.e. events with tracks that occur more than 600 ns
apart) in the data that pass all other selection criteria.

A number of selection criteria are applied to separate events
with high pT muons. The events are required to trigger
at least 6 DOMs in IceTop and at least 8 DOMs in Ice-
Cube. The events are also required to have high quality
two-track reconstructions. This includes requiring that the
tracks have at least one hit DOM with a time residual of
less than 15 ns (a ‘direct hit’) and that tracks pass within the30
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detector fiducial volume. Further reduction of single muon
bundles is done based on the differences in event topologies
and timing. For instance, single muon bundles are well-
reconstructed by a single track hypothesis, while the high
pT muon events are not. Figure 2 shows the negative log
of the reduced likelihood of a single track reconstruction
for single muon bundles, and showers with an inserted 8
and 16 GeV/cpT , 1 TeV muon (separation of 200 m and
400 m from the shower core, assuming an average inter-
action height of 25 km). Well-reconstructed events have a
lower likelihood value on this plot. For large separations,
this variable separates single muon bundles from showers
which contain a highpT muon. This analysis retains events
with a likelihood greater than 7.5. Next we require that the
highpT muon track be a robust track in the detector with at
least 6 direct hits. Finally, the remaining background single
muon bundle events are removed by requiring the perpen-
dicular separation between tracks to be at least 160 m. The
number of events passing each type of selection criteria for
data and simulated background and signal are shown in Ta-
ble 1.
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Figure 2: Negative log of the reduced likelihood for the
single track reconstruction

4 Results

After applying all selection criteria 53 events remain in 114
days of data. No events remain in the simulated back-
ground. One event that passes all the selection criteria is
shown in Fig. 3. The reconstructed highpT muon and bun-
dle track have a perpendicular separation of 207 m at the
center of the detector. The two tracks arrive within 470 ns
and 3.3◦ of each other.

4.1 Purity of Final Sample

Simulation of single muon bundle background events is
too computationally intensive to accumulate large statis-
tics. Although no simulated single muon bundle event
passed all the selection criteria, the possibility exists that
some single muon bundle background events could survive
in the final data sample. In order to estimate the purity of

Figure 3: Candidate shower with a highpT muon. The
cosmic ray bundle is on the left and the highpT muon is on
the right.

the final sample a study has been conducted of simulated
events which pass the reconstruction quality and double-
coincident seleciton criteria (without applying the criteria
designed to remove single track events). At this cut level,
the only events left in the single muon bundle background
are events which are incorrectly split into two tracks by the
splitting algorithm. Two previously unused variables were
developed that focused on studying how well the bundle fit
described the highpT muon hits and vice versa.

The first variable is the standard deviation of the time resid-
ual relative to the reconstructed bundle track (σbundle).
Only hits belonging to the highpT muon reconstructed
track (time residual< 100 ns and distance from the bun-
dle > 90 m) were used to calculateσbundle. In the single
muon bundle backgroundσbundle is small because the bun-
dle reconstruction is equally good at describing both sets of
hits. Conversely, events with highpT muons have a later-
ally separated track that is causally disconnected from the
bundle track. This leads to larger values ofσbundle.

The second variable is the mean of the time residuals rel-
ative to the reconstructed highpT muon track. Only hits
within 90 m of the bundle track are used for this calcula-
tion. This variable uses the fact that the parallel but lat-
erally separated highpT muon track have a negative time
residual relative to the bundle track. Single muon bundles
incorrectly split into two groups tends to have time residu-
als that are closer to zero because both groups are causally
consistent with the bundle hypothesis.

These two variables are shown in Fig. 4. The back-
ground single muon bundles and highpT muon simulation
are at a relaxed cut level with only reconstruction quality
and double-coincidenceselection criteria applied, while the
data points are after all selection criteria have been applied.
The dashed grey line is a fit to the mean of the background
single muon bundle points. To estimate the purity of the
data sample, this line has been moved upwards until every
simulated single muon bundle event is below it. Thirty-one31
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Cut Data Simulation Simulated Signal (%)
IceTop and IceCube Trigger 1.35 x 107 1.47 x 107 100%
Bundle and HighpT Reconstructions Successful4.59 x 105 3.04 x 105 49%
Double-Coincidence Cuts 1.16 x 105 1.35 x 105 25%
Reconstruction Quality Cuts 2.57 x 104 1.64 x 104 13%
Single Track Cuts 53 0 8%

Table 1: Number of events in 114 days for data and simulated background. The percentage passing rates for simulated
highpT muons with a lateral separation of 200 m (8 GeV/c) are shown as well.
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Figure 4: Standard deviation versus mean of time residuals.
Note that the selection criteria have been relaxed for the
simulated events.

of the fifty-three data events lie above the line, giving a pre-
liminary estimation for the purity of the final event sample
of at least 58%.

4.2 Estimation of Double-Coincident Rates

As mentioned in Section 3, an irreducible background re-
mains from double-coincident cosmic rays. The number of
these events in the on-time window (±600 ns) can be es-
timated by counting the number of events with tracks that
occur with a time difference greater than 600 ns after ap-
plying all other selection criteria. In the final data sample,
eight events were found in this off-time window. To be con-
servative, two events with a time difference greater than
20,000 ns are discarded. The remaining six events were
spread over a time range of 2260 ns, giving an expectation
that 3 of the 53 events in the±600 ns on-time window are
due to double-coincident cosmic rays.

4.3 Lateral Distribution of Muons

Figure 5 shows the preliminary perpendicular separation
between the bundle and highpT muon reconstructions at
the center of the detector. The black solid lines are the
53 data events that passed all selection criteria. Prelimi-
nary estimations indicate that this sample is 58% pure. The
dashed red lines are the data events that passed all selec-
tion criteria, but had time differences greater than±600 ns.

These events have been scaled down to the rate of 3 events
in the on-time window.
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Figure 5: Preliminary perpendicular separation between
bundle and highpT muon reconstructions at the center of
the detector.

5 Conclusions

A search for cosmic ray events with laterally separated
muons has been conducted in 114 days with 25% of the
full IceCube detector. The fraction of single muon bun-
dle events remaining in the final sample has been con-
servatively estimated to be 42% and the number of back-
ground double-coincident events has been shown to be very
small. Further searches with IceCube data with larger in-
strumented volume will have important implications for
cosmic ray composition and air shower simulation.
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Abstract: We report on a study of the energy dependence in the arrival direction distribution of cosmic rays at median
energies of 20 and 400 TeV. The data used in this analysis contain 33×109 downward going muon events collected
by the IceCube neutrino observatory between May 2009 and May 2010 when it comprised of 59 strings. The high
rate of cosmic ray induced muons observed by IceCube allows us to perform the first study of the galactic cosmic ray
arrival distribution around 400 TeV in the Southern sky. The sidereal anisotropy observed at 400 TeV shows substantial
differences with respect to that at lower energy. Studies of the energy dependence of the anisotropy could further enhance
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1 Introduction

During the last decades, Galactic cosmic rays have been
found to have a small but measurable energy dependent
sidereal anisotropy in their arrival direction distribution
with a relative amplitude of order of 10−4 to 10−3. The
first comprehensive observation of the cosmic ray side-
real anisotropy was provided by a network of muon detec-
tors sensitive to cosmic rays between 10 and several hun-
dred GeV [1]. More recent underground and surface ar-
ray experiments in the Northern hemisphere have shown
that a sidereal anisotropy is present in the TeV energy
range (i.e. Tibet Air Shower Arrays (Tibet ASγ) [2], Mi-
lagro [3]). The IceCube neutrino observatory reported for
the first time the observation of the cosmic rays sidereal
anisotropy in the Southern sky at energies in excess of
about 10 TeV [4]. The cosmic ray anisotropy reported by
IceCube showed that the large scale features were a contin-
uation of those observed in the Northern hemisphere in the
same energy range.
At high energies, the Tibet ASγ collaboration reported
the non-observation of a sidereal anisotropy in the cosmic
ray arrival direction distribution at ∼ 300 TeV [2]. An-
other measurement at ∼370 TeV was recently published
by the EAS-TOP collaboration reporting a larger sidereal
anisotropy in amplitude with a shift in phase from that ob-
served at lower energies [5]. At this point the two obser-

vations do not provide a coherent picture of the sidereal
anisotropy at high energy in the Northern hemisphere.
In this contribution we present the analysis and the results
of the study of large scale cosmic ray anisotropy at median
energies of 20 and 400 TeV by IceCube for the Southern
celestial sky. Observations of the energy dependence of the
anisotropy could provide us with further information for
the development of theoretical models to better understand
the origin and propagation of cosmic rays.

2 Data Analysis

The main goal of the IceCube neutrino observatory is to
detect astrophysical neutrinos. Neutrinos passing through
the Earth and interacting in the vicinity of IceCube produce
muons or other secondaries that emit Cherenkov radiation
in the clear ice surrounding the detector. It is these light
signals that the IceCube optical modules record. On the
other hand, muons produced by cosmic ray air-showers in
the atmosphere above IceCube are also detected. These are
observed as down-going tracks.
The data used in this analysis are the downward going
muons collected by the IceCube detector comprising 59
strings. The data were collected from May 2009 to May
2010 [6]. The events used in this analysis are those re-
constructed by an online likelihood based reconstruction
algorithm at an average rate of ∼1250 Hz with a median
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angular resolution of ∼ 3◦. A range of selection criteria is
applied to that data to ensure good quality and stable runs.
The final data set consists of 33×109 events corresponding
to a detector livetime of 324.8 days.
Due to the detector’s unique location, the IceCube Obser-
vatory has full coverage of the Southern sky up to declina-
tion angles of -25◦ degrees at any time of the year. The sea-
sonal and atmospheric variation of the muon intensity were
found to occur uniformly across the entire field of view,
and therefore it did not affect the arrival distribution of the
reconstructed events [4]. The crucial effect that needed to
be accounted for was due to the geometrical shape of Ice-
Cube: events that were parallel to a larger number of strings
were more efficiently reconstructed. The non-uniform time
coverage due to detector downtime and run selection pre-
cluded the complete averaging of the detector geometrical
asymmetry and generated artificial variations of the arrival
direction of cosmic rays in equatorial coordinates. The lo-
cal azimuthal asymmetry was corrected by reweighting the
arrival directions of the data [4].

3 Energy Estimation

The energy dependence of the large scale anisotropy may
hint at the nature of the source (or sources) of the cosmic
rays, as well as their propagation through galactic magnetic
fields. Similar measurements have been carried out over a
wide range of energies by underground muon experiments
and air shower arrays [1, 7, 8, 9, 10] but there are relatively
few observations in the multi-TeV region.
Since IceCube detects cosmic ray properties indirectly
through the observation of muons produced in the exten-
sive air showers, the cosmic ray particles energy is inferred
from the estimation of the muon energy. In this analysis,
we use the number of optical modules Nch participating
together with the zenith angle θ of the event to estimate the
energy of the events. Using Monte Carlo simulations, we
have identified cuts of constant energy in (Nch, θ) for the
two event samples. The primary cosmic ray energy estima-
tion had a resolution of about 0.5 in log10 scale and, this is
due to the fact that it is dominated by the large fluctuations
of the number and energy of muons produced in the exten-
sive air showers. The low energy sample contained events
with a median energy of 20 TeV, where 68% of the events
were between 4−63 TeV; and the high energy sample con-
tained events with a median energy of 400 TeV, were 68%
of the events were between 100 − 1258 TeV.

4 Results

To investigate the arrival direction distribution of the cos-
mic rays, we study the relative intensity of the cosmic ray
flux. The arrival direction distribution is dominated by the
zenith angle dependence of the flux. Therefore, we normal-
ize the flux within declination belts of width ∼ 3◦, which
corresponds to the angular resolution of the data.

To quantify the scale of the anisotropy, we fitted the right
ascension projection distribution for declinations angles
-25◦to -75◦ degrees of the data to a first and second-order
harmonic function of the form

2∑

j=1

Aj cos[j(α − φj)] + B (1)

where (Ai, φi) are the amplitude and phase of the
anisotropy, α is the right ascension, and B is a constant.
Figures 1 and 2 show the relative intensity cosmic ray
maps together with the profile of the data in right ascen-
sion for events in both the 20 TeV and the 400 TeV en-
ergy sample. The error bars in the right ascension projec-
tion are derived by propagating the statistical errors from
each declination belt, and the gray band indicates the esti-
mated maximal systematic uncertainties (described in sec-
tion 4.1.1). The solid line indicates the fit of eq. (1) to the
data. The first and second harmonic amplitude and phase of
the sidereal anisotropy for the low energy sample together
with their statistical and systematic uncertainties are A1 =
(7.9±0.1stat.±0.4syst.)×10−4 and φ1 = 50.5◦±1.0◦stat±
1.1◦syst., A2 = (2.9±0.1stat. ±0.4syst.)×10−4 and φ2 =
299.5◦ ± 1.3◦stat ± 1.5◦syst.. While those for the high en-
ergy sample areA1 = (3.7±0.7stat.±0.7syst.)×10−4 and
φ1 = 239.2◦±10.6◦stat±10.8◦syst., A2 = (2.7±0.7stat.±
0.6syst.) × 10−4 and φ2 = 152.7◦ ± 7.0◦stat ± 4.2◦syst..

4.1 Reliability Checks

4.1.1 Data Stability

In order to assess and quantify the systematic uncertainties
in the sidereal anisotropy of cosmic ray arrival direction
distribution a number of checks were applied by dividing
the low and high energy data samples in exclusive halves
based on different criteria. A full analysis was then ap-
plied for each dataset and the relative intensity distribution
in right ascension was determined for each of them. The
stability checks applied are:

• Seasonal variations dependence: where the data was
divided in two seasons (winter and summer).

• Rate variations dependence: where the data was di-
vided for each day by the sub-run (a sub-run corre-
sponded to approximately 2 minutes of observations)
rate fluctuating being greater than or less than the
median rate of the day.

• Choices of events sample dependence: where the
data was divided by the sub-run number using multi-
ple categories.

• Non-uniform time coverage dependence due to de-
tector down time and quality run selection: where the
analysis was performed on the sub-sample of days
with maximal data collection time.
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The sidereal distribution of relative intensity in the arrival
direction of the cosmic rays for the low and high energy
samples are used to evaluate the spread in the experimen-
tal observation from the full-year event samples. The gray
bands in the right ascension projection in Figures 1 and 2
describe the maximal spread obtained from the result of all
the stability checks described in this section.

4.1.2 Solar Diurnal Anisotropy

To test for the stability of the observatory and its time cov-
erage, an effective way to have an absolute calibration of
the experimental sensitivity for the detection of the sidereal
directional asymmetries is to measure the solar anisotropy
from the Earth’s revolution around the Sun. This observa-
tion has solid theoretical grounds and it was first reported
in 1986 [11] and then later observed by multiple experi-
ments in the multi-TeV energy range (i.e. [2], [3]). The
observed solar anisotropy is consistent with a dipole that
describes an apparent excess of cosmic rays in the direc-
tion of Earth’s motion around the Sun and a deficit in the
opposite direction.
Figure 3 shows the projections of the cosmic ray arrival
direction in solar reference frame, for both energy sam-
ples (20 and 400 TeV). The error bars are the statistical
errors, and the shaded bands indicate the expectation of the
dipole. A fit to the projection of relative intensity distribu-
tion is shown by the black line and was done using the first
harmonic term of eq. (1). The figures show that the experi-
mental observation of the solar dipole is consistent with the
expectations in both amplitude and phase. This observation
of the solar diurnal anisotropy supports the reliability of the
sidereal anisotropy determination.

4.1.3 Anti-sidereal Anisotropy

An annual modulation in the amplitude of the solar
anisotropy is expected to result in a spurious effect in the
sidereal anisotropy. This would produce a bias in the ob-
served sidereal anisotropy. To estimate this bias the so-
called anti-sidereal time, i.e. a non-physical time frame ob-
tained by reversing the sign of the transformation from so-
lar time to sidereal time [12].
Figure 4 shows the projections of the cosmic ray arrival
direction in anti-sidereal reference frame, for both energy
samples (20 and 400 TeV). The error bars are the statisti-
cal errors. The distributions were then fitted to the dipole
term of eq. (1). The uncertainty in the first harmonic am-
plitude and phase implied by the study in the anti-sidereal
time frame is within the statistical and systematic errors de-
termined from the data stability tests. The absence of the
signal in the anti-sidereal time insures the reliability of the
anisotropy observed in sidereal time.

Figure 1: The top figure is the IceCube relative intensity
cosmic ray map for the low energy sample (Median energy
of the primary cosmic ray particle of 20 TeV). The bottom
figure is the one dimensional projection in right ascension
α of the two-dimensional cosmic ray map. The black line
corresponds to the first and second harmonic fit to the data.
The gray band indicates the estimated maximal systematic
uncertainties.

Figure 2: The top figure is the IceCube relative intensity
cosmic ray map for the high energy sample (Median energy
of the primary cosmic ray particle of 400 TeV). The bottom
figures is the one dimensional projection in right ascension
α of the two-dimensional cosmic ray map. The black line
corresponds to the first and second harmonic fit to the data.
The gray band indicates the estimated maximal systematic
uncertainties.

5 Conclusion

In this contribution we presented the results on the large
scale cosmic ray sidereal anisotropy at cosmic ray median
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Figure 3: The solar projections for cosmic rays with me-
dian energy of 20 TeV (The top figure) and 400 TeV (The
bottom figure). The error bars are the statistical errors, and
the shaded band indicated the solar diurnal dipole expected
from the motion of the Earth around the Sun.

energies of 20 TeV and 400 TeV. The source of the sidereal
anisotropy is still unknown. It is believed that a possible
contribution to this observed anisotropy might be from the
Compton-Getting effect, due to the orbital motion of the so-
lar system around the galactic disk. However, the sidereal
anisotropy from both energy samples do not appear to be
consistent with that expected from the suggested Compton-
Getting model neither in amplitude nor in phase.
The sidereal anisotropy observed at 20 TeV with IceCube-
59 is consistent with the previously reported observation
with IceCube [4], thus providing a confirmation of an ap-
parent continuation of the arrival distribution pattern ob-
served in the Northern hemisphere. On the other hand the
sidereal anisotropy observed at 400 TeV shows substan-
tial differences with respect to that at lower energy. The
anisotropy at high energy shows a relative deficit region
in right ascension where the broad excess dominated at
primary median energy of 20 TeV. Also the wide relative
deficit region at low energy seemed to have disappeared
at primary median energy of 400 TeV. Whatever generated
the sidereal anisotropy at 20 TeV seems to have no effect at
400 TeV.
This is the first observation of the sidereal anisotropy at 400
TeV in the Southern hemisphere. We are continuously an-
alyzing events from IceCube with updated configurations.
IceCube construction is now completed with 86 strings de-
ployed with a volume of km3 in January of 2011. With the

Figure 4: The anti-sidereal projections for cosmic rays with
median energy of 20 TeV (The top figure) and 400 TeV
(The bottom figure). The error bars are the statistical errors.
The black line corresponds to the first harmonic fit to the
data.

higher statistical power expected from the observed cosmic
ray muons we will be able to improve our understanding of
the energy dependence of the anisotropy with more signifi-
cance and close to the knee region. The energy dependence
of the cosmic ray anisotropy is vital to our understanding
of the source and propagation of cosmic rays.
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Abstract: The IceCube neutrino detector at the South Pole is sensitive to atmospheric muons produced by primary cosmic
rays in the TeV energy range. The high rate of events (about 2 kHz in the full 86-string detector) allows for searches of
anisotropy in the arrival direction distribution of cosmic rays at the level of a few parts per mille. Using the muon data
recorded with IceCube between 2007 and 2010, we show that the cosmic ray flux in the southern hemisphere is not
isotropic, but exhibits significant structure on multiple angular scales. In addition to large-scale features in the form of
strong dipole and quadrupole moments, the data include several localized regions of excess and deficit on scales between
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◦ and30
◦. These features are statistically significant. The origin of the features is currently unknown.

Corresponding Authors: Segev BenZvi2 (sybenzvi@icecube.wisc.edu),
Marcos Santander2 (santander@icecube.wisc.edu), Simona Toscano2 (toscano@icecube.wisc.edu),
Stefan Westerhoff2 (swesterhoff@icecube.wisc.edu)
2Dept. of Physics, University of Wisconsin-Madison, Madison, WI 53703, USA

Keywords: Cosmic Rays – TeV; Anisotropy; Muons; Neutrinos

1 Introduction

The IceCube detector, deployed between 1450 m to 2450 m
below the surface of the South Polar ice sheet, is de-
signed to detect upward-going neutrinos from astrophysical
sources. However, it is also sensitive to downward-going
muons from cosmic-ray air showers. To penetrate the ice
and trigger the detector, the muons must be produced by
cosmic rays with energies of at least several TeV. The ar-
rival direction of a cosmic muon is typically within0.2◦ of
the direction of the primary particle, so the arrival direction
distribution of muons is also a map of cosmic ray arrival
directions between about1 and several hundred TeV.

At energies of a few TeV, it is believed that galactic
magnetic fields should randomize the arrival directions
of charged cosmic rays. However, in recent years an
anisotropy in the arrival direction distribution has been
reported on both large and small angular scales. The
anisotropy is observed in the northern sky between sev-
eral TeV and several hundred TeV by the Tibet ASγarray
[1], Super-Kamiokande [2], Milagro [3, 4], ARGO-YBJ
[5], and EAS-TOP [6]. In 2010, an analysis of muons
recorded by the IceCube detector also revealed a large-
scale anisotropy in the southern sky [7]. In these proceed-
ings, we present the results of a search of the southern sky
for anisotropy on all angular scales using data recorded be-
tween May 2009 and May 2010.

2 The IceCube Detector and Data

IceCube is a km3-size neutrino detector frozen into the
glacial ice sheet at the geographic South Pole. High-
energy charged particles passing through the detector emit
Cherenkov radiation, and their tracks are recorded by an
array of Digital Optical Modules (DOMs) embedded in the
ice. The DOMs are attached to 86 vertical cables, or strings
(with 60 DOMs per string), which are used to transmit data
to the surface. Construction of IceCube was completed in
December 2010. The detector has been operating in vari-
ous configurations since construction began. Between 2007
and 2008, it was operated with 22 strings deployed (IC22),
between 2008 and 2009 with 40 strings (IC40), and be-
tween 2009 and 2010 with 59 strings.

Muons are identified using a simple majority trigger, which
requires 8 or more DOMs in local coincidence within a5 µs
window. The trigger rate of downgoing muons is 0.5 kHz
in IC22, 1.2 kHz in IC40, and 1.4 kHz in IC59, about a fac-
tor of 106 larger than the neutrino rate. The rate is too large
to transfer complete waveforms for all events via satellite,
so the muon data are reconstructed on-line and compressed
using a Data Storage and Transfer (DST) format. Muon
tracks are identified using a maximum-likelihood recon-
struction, and the event arrival direction and energy estima-
tors are stored in DST files and sent north by satellite. Dig-
itized waveforms are discarded due to limited bandwidth.
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The analysis presented in this paper uses the DST data col-
lected during IC59 operations between May 20, 2009 and
May 30, 2010. The data set contains nearly3.4 × 1010

muon events recorded during a live time of 335.5 days. A
cut in zenith angle at65◦ removes less well-reconstructed
tracks near the horizon, reducing the final analysis sample
to 3.2 × 1010 events. The median angular resolution of
events in the sample is3◦; unlike the neutrino analysis, the
cuts have not been optimized for point source identifica-
tion. Using simulated data, we estimate the median energy
of the events to be20 TeV. The energy resolution of the
cosmic ray primaries is about∆log (E/eV) = 0.5.

3 Analysis

3.1 Calculation of the Reference Level

The arrival direction distribution of cosmic rays in IceCube
exhibits anisotropy caused by non-physical effects such as
gaps in the detector uptime. These effects must be re-
moved before any physical anisotropy can be identified.
Therefore, the first step in the analysis is the creation of
a “reference map,” a sky map that describes what the ar-
rival direction distribution would be if the cosmic ray flux
were isotropic. The reference map must be subtracted from
the arrival direction distribution in the data to find regions
where the cosmic ray flux deviates from the isotropic ex-
pectation.

We estimate a reference map for IC59 data using the time-
scrambling method of Alexandreas et al. [8]. The sky
is binned into an equal-area grid in equatorial coordinates
with 0.9◦ resolution using the publicly-available HEALPix
library [9]. From this sample two sky maps are produced.
The data mapN(α, δ) stores the arrival directions of all
events. For each detected event in the data map, “fake”
events are generated by keeping the local zenith and az-
imuth angles(θ, φ) fixed but reassigning the time to that of
another event recorded within a pre-defined time window
∆t. The event times within the window are resampled 20
times and used to generate 20 fake celestial coordinate pairs
(α, δ) which are used to fill a reference sky map〈N(α, δ)〉
with a weight of 1/20.

A known disadvantage of the method is that it can be bi-
ased by a strong anisotropy, leading to artificial deficits or
excesses next to regions of true excess or deficit [3]. How-
ever, the procedure does preserve the local arrival direction
distribution of the data and naturally compensates for vari-
ations in the event rate which are difficult to model, such as
changes in atmospheric conditions which affect the produc-
tion of muons in air showers. The only critical requirement
for time scrambling is to choose the buffer length∆t such
that detector conditions remain stable during this period.
Usingχ2 tests to compare the distribution of arrival direc-
tions in local coordinates across measurement periods, we
have verified that the IceCube detector is stable over pe-
riods of at least one full day. In this analysis we choose
∆t = 24 hr.

Figure 1:Top: Relative intensity of the IC59 data produced
with ∆t = 24 hr. Middle: Fit of dipole and quadrupole
moments to the relative intensity.Bottom: Residual map
after removal of the dipole and quadrupole.

3.2 Relative Intensity

Once the data and reference maps are calculated, deviations
from isotropy can be analyzed by computing the relative
intensity

∆Ni

〈N〉i
=

Ni(α, δ) − 〈Ni(α, δ)〉

〈Ni(α, δ)〉
. (1)

which gives the amplitude of deviations from the isotropic
expectation in each angular bini. The significance of the
deviation in bini can be calculated using the method of Li
and Ma [10].

A map of relative intensity of the IC59 data, binned with
0.9◦ resolution, is shown at the top of Fig. 1. The map ex-
hibits obvious correlations between bins, such as a broad
excess in the relative counts nearα = 105◦ and a broad
deficit nearα = 225◦. The relative intensity in these re-
gions is of order10−3. This structure is the large-scale
anisotropy reported in the IC22 data by Abbasi et al. [7].
Since the IC59 data set is larger than that of IC22 by an or-
der of magnitude, it is possible to see the large-scale struc-
ture in the data without further rebinning.

3.3 Removal of Large-Scale Structure

The relative intensity shown at the top of Fig. 1 is dom-
inated by large-scale structures, but there are additional
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Figure 2: IC59 residual maps after subtraction of dipole and quadrupole moments, showing relative intensity (left) and
significance before trial factors are applied (right). The maps have been smoothed with a circular window of20◦.

Figure 3: Residual maps from IC22 (left) and IC40 (right) showing the significance of deficit and excess regions with20◦

smoothing.

small-scale features in the map. This can be demonstrated
by calculating the angular power spectrum of the data,
which exhibits significant power not only at the largest an-
gular scales, but also down to scales of about10◦ (see de-
tailed discussion in Abbasi et al. [11]).

We can also demonstrate the presence of small-scale struc-
ture by explicitly removing the largest angular correlations
in the data. This is accomplished by fitting dipole and
quadrupole terms to the relative intensity map and then
subtracting the fit to obtain a map of residual counts. In
the middle panel of Fig. 1, we show the result of the fit
of dipole and quadrupole moments to the intensity map.
By themselves, these two terms account for much of the
amplitude of the per-mille anisotropy observed in the data.
However, the fitχ2/ndf = 14743/14187 corresponds to a
χ2-probability of approximately0.05%, suggesting that the
dipole and quadrupole are not sufficient to explain all of the
structures observed in the angular distribution of∆N/〈N〉.

Subtraction of the dipole and quadrupole fit from the data
gives the bottom panel in Fig. 1. The fit residuals are rel-
atively featureless at first glance, but the bin size is not
optimized for a study of significant anisotropy at angular
scales larger than the angular resolution of the detector. To
increase the sensitivity to the small-scale structure in the
data, we apply a smoothing procedure which takes the ref-
erence level and residual data counts in each bin and adds
the counts from pixels within some angular radius of the
bin. This procedure results in a map with Poisson uncer-
tainties, though the bins are no longer statistically indepen-
dent.

Smoothed residual maps of relative intensity and signifi-
cance are shown in Fig. 2. To make this figure, a smooth-

ing radius of20◦ was chosen. Strong regions of excess
and deficit are visible in the data. Note that the actual size
of any given excess or deficit region (and thus the optimal
smoothing scale) is not knowna priori. Therefore, we study
the sky map on all smoothing scales from3◦ (the angular
resolution of the data) to45◦ in steps of1◦ and search for
regions of high significance at any location.

Applying this procedure, the two most significant features
on the sky are a region with a peak significance of5.3σ at
a smoothing radius of22◦ (α = 122.4◦, δ = −47.4◦) and
a region of peak significance4.9σ at a smoothing radius
of 13◦ (α = 263.0◦,−44.1◦). The significance values ac-
count for statistical trials due to the scan over smoothing
radii and the location of the most significant pixels. The
trial factors were estimated using a Monte Carlo simula-
tion of an isotropic flux recorded by the IceCube detector.

4 Systematic Checks

Several tests have been performed on the data to ensure the
stability of the observed anisotropy and to rule out possi-
ble sources of systematic bias. Among the influences that
might cause spurious non-physical anisotropies are the de-
tector geometry, the detector livetime, non-uniform expo-
sure of the detector to different regions of the sky, and diur-
nal and seasonal variations in atmospheric conditions. Due
to its unique location at the South Pole, many of these ef-
fects play a lesser role for IceCube than for detectors at the
middle latitudes. We check the validity of this assumption
by searching the data for a signal expected in solar coordi-
nates, and by examining the data from previous configura-
tions of the detector.
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4.1 Solar Dipole Analysis

The cosmic rays at TeV energies do not co-rotate with the
Earth about the Sun, and so it is expected that the flux of
cosmic rays should exhibit a dipole modulation in solar
coordinates. The expected change in relative intensity is
given by

∆I

I
= (γ + 2)

v

c
cos θ, (2)

whereI is the cosmic ray intensity,γ = 2.7 is the power
law index of the energy spectrum at several TeV,v/c is the
ratio of the orbital velocity of the Earth with respect to the
speed of light, andθ is the angle between the cosmic ray
arrival direction and the direction of motion of the Earth.
Given v = 30 km s−1, we expect an amplitude of4.7 ×
10−4.

The solar dipole provides a convenient measurement with
which to check the analysis technique. The reference
and data maps were computed in solar coordinates, and
the relative intensity map has been fit with a dipole func-
tion. A single dipole describes the data quite well: the fit
χ2/ndf = 14206.8/14192 corresponds to aχ2-probability
of 41.6%. The dipole is aligned at a longitude of270◦ in
solar coordinates, following the expectation for a relative-
motion anisotropy in this coordinate frame. Its amplitude
is (3.66 ± 0.14 ± 0.99) × 10−4, in agreement with the ex-
pectation within the large systematic uncertainty. A more
detailed study of the solar dipole anisotropy is presented in
Abbasi and Desiati [12].

4.2 Anti-Sidereal Time Analysis

Seasonal variations in the solar dipole anisotropy can create
spurious signals in equatorial coordinates, and vice-versa.
We study this effect using an artificial time scale called
anti-sidereal time, which is calculated by reversing the sign
of the transformation between universal time and sidereal
time. No physical anisotropy is expected in this reference
frame, but it can be used to identify systematic distortions
due to seasonal effects.

We have produced sky maps using anti-sidereal coordinates
and performed the same analysis presented in Section 3.
No regions of significant excess or deficit are observed in
the anti-sidereal maps for any smoothing scale. A detailed
discussion is provided in [11].

4.3 Comparison to IC22 and IC40 Data

An important cross-check of the IC59 analysis can be made
by applying the same method to data recorded in the two
data periods prior to IC59. The IC22 data set contains
4×109 events recorded between July 2007 and April 2008,
and the IC40 data set contains1.9 × 1010 events recorded
between April 2008 and April 2009. While the samples are
smaller than IC59, we expect to observe the most promi-
nent structures in these data, albeit with reduced signifi-
cance. The IC22 and IC40 data can be used to verify that

the structures observed in the arrival direction distribution
do not depend on the geometry of the detector or the data-
taking period. For example, the shape of IC22 was highly
asymmetrical, with a long and a short axis.

In Fig. 3, we show the residual maps from IC22 and IC40
after the subtraction of dipole and quadrupole terms and
smoothing by20◦. While none of the features in IC22 and
IC40 have a pre-trial significance above5σ, they align with
the regions of deficit and excess observed with IC59 data
(cf. Fig 2). The main features on both large and small
scales appear to be persistent in all data sets.

5 Conclusions

Using 3.2 × 1010 events recorded with the partially-
deployed IceCube detector between May 2009 and May
2010, we have found that the arrival direction distribu-
tion of cosmic rays at several TeV exhibits significant
anisotropy on several angular scales. The data are domi-
nated by dipole and quadrupole moments, but there is also
significant structure on angular scales down to about10◦.
These structures become visible in the sky map when the
dominant terms are subtracted.

There is currently no explanation for these local enhance-
ments in the cosmic ray flux, and so the study of cosmic
ray arrival directions in the TeV region will continue to be a
major ongoing effort in IceCube. We are currently studying
the anisotropy in the 79-string configuration of the detector
(IC79). During the next several years, with the IceCube de-
tector operating in its complete 86-string configuration, the
data will increase by4.5×1010 events per year. With these
high statistics we will be able to study possible time depen-
dencies in the anisotropy and compare to similar studies in
the northern hemisphere [4, 13]
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Abstract:
IceCube is a kilometer scale neutrino observatory that collects a large number of cosmic ray induced muon events. These
events, which are background for neutrino searches, are observed at a rate that is suitable for high-statistics studies of
cosmic rays in the Southern hemisphere. The apparent anisotropy created by the motion of the Earth around the Sun, the
solar dipole, is systematically analyzed. The solar dipole is simulated, and the predictions for the integrated effect over an
entire year and over shorter periods of a quarter-year are compared to data. The experimental observation is found to be
in good agreement with the expectation. Finally, we show that the interference between the solar dipole and the sidereal
anisotropy is well understood within the statistical uncertainties.
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1 Introduction

The motion of an observer in the cosmic ray plasma is pre-
dicted to cause an apparent dipole effect in the cosmic ray
arrival direction; this effect was first pointed out in 1935 by
Arthur Compton and Ivan Getting [1]. Using this principle,
the motion of the Earth around the Sun would produce an
excess in the direction of motion and a deficit in the oppo-
site direction. This observation was first reported by Cutler
in 1986 [2], and then later observed by multiple experi-
ments (i.e. Tibet Air Shower Arrays (Tibet ASγ) [3], Mila-
gro [4], and EAS-TOP [5]). This measurement is referred
to in this contribution as the solar dipole effect anisotropy
and is expressed as

∆I

〈I〉
= (γ + 2)

v

c
cos(θv) (1)

where I is the intensity, γ is the differential cosmic ray
spectral index, v is the Earth’s velocity, c is the speed of
light, and θv is the angle between the reconstructed arrival
direction of the cosmic rays and the direction of the motion
of the Earth [6].
In addition to the solar dipole effect, galactic cosmic ray
anisotropies have been observed by underground and sur-
face array experiments in the Northern hemisphere such
as Tibet ASγ [3]. Furthermore, IceCube recently reported
the first observation of the sidereal anisotropy in cosmic
ray arrival direction in the Southern sky [7] with a relative

amplitude of the order of 10−4 to 10−3. The cosmic ray
anisotropy showed that the sidereal anisotropy in the South-
ern sky is a continuation of that observed in the Northern
hemisphere.
In this proceeding, we report on the study of the observa-
tion and the expectation of the solar dipole effect in one
full year. We also examine the effect of the mutual interfer-
ence between the sidereal anisotropy and the solar dipole
effect by examining quarter-year periods. The solar dipole
effect and the interference between the sidereal and the so-
lar effect over quarter-year periods is found to be well un-
derstood. This understanding supports the reliability of the
sidereal anisotropy observations.

2 Data Analysis

IceCube is optimized for the detection of up-going, high-
energy neutrinos, however its trigger rate is dominated by
down-going atmospheric muons created in cosmic ray air-
showers above the detector. In this work, we use the down-
going atmospheric muon flux as our signal to study cosmic
rays in the Southern sky. The data used in this analysis are
the down-going muons collected by the IceCube detector
in its 59-string configuration from May 2009 to May 2010.
The data are reconstructed by an online maximum likeli-
hood based reconstruction algorithm at an average rate of
∼1.2 kHz. A range of selection criteria is applied to the
data to ensure detector stability. The final data set consists
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Figure 1: This plot shows the IceCube configuration with
86 strings in empty circles and the 59-string configuration
in filled circles.

of 33 billion events and corresponds to a detector livetime
of 324.8 days. The events are initiated by muons from cos-
mic ray air-showers with a median primary energy of 20
TeV. The angular resolution between the muon to the pri-
mary cosmic ray particle has a median value of ∼3◦.
Located at the South Pole, IceCube observes the Southern
sky year-round. However, an artificial azimuthal asymme-
try occurs as an artifact of the detector’s geometrical con-
figuration (Figure 1) combined with non-uniform time cov-
erage. This azimuthal asymmetry was eliminated by re-
weighting the azimuthal arrival directions of the incoming
cosmic rays [7].

3 Solar Dipole Anisotropy Measurement and
Expectation

The solar dipole is a well-known signal, both from the-
ory and from observations by other experiments. A mea-
surement of this well-known signal with IceCube strongly
supports the reliability of the observation of the sidereal
anisotropy with the same detector [8].
The amplitude of the solar dipole depends on the geograph-
ical latitude of the observer and on the angular distribution
of the detected cosmic ray events at the observatory. Due to
the location of the IceCube Observatory at the South Pole,
the sky is fully visible at any given time. Therefore, the
solar dipole is observed in a reference system where the lo-
cation of the Sun is fixed, where the latitude coordinate is
the declination, and the longitude coordinate is defined to
be the difference between the right ascension of the cos-
mic ray arrival direction and the right ascension of the Sun
(α − αSun). In this reference frame, the excess due to the
solar dipole is expected to be at 270◦ and a deficit at 90◦.
To verify that the experimental observation of the solar
dipole is consistent with the expectation, the predicted pro-
jection of the solar anisotropy was calculated for the Ice-
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Figure 2: The plot shows the one-dimensional projection in
α−αSun of the relative intensity of cosmic rays. The data
are shown with statistical uncertainties in black crosses,
and the black line corresponds to the expectation from
eq. 1. The gray shaded band indicates the 68% spread of
the uncertainty in the simulated solar dipole.

Cube location. Since the observed amplitude of the solar
dipole depends on the actual angular distribution of the de-
tected muon events, the calculation of the expectation was
performed using the azimuth-corrected experimental data.
The expectation of the solar dipole was calculated by com-
puting the relative intensity of the solar dipole through the
cosmic ray plasma (through eq. 1). Instead of counting the
number of events within a given bin in right ascension from
the Sun, we calculated for each event, a mean weight cor-
responding to the expected relative intensity of the solar
dipole.
The uncertainties in the cosmic ray spectral index, in the
Earth’s velocity, and in the reconstructed arrival direction
of the events were included into the calculation of the
uncertainty of the expectation. The mean spectral index
was evaluated using the all-particle cosmic ray spectrum
from [9] and was found to be 2.67 ± 0.19. The value used
for Earth’s velocity was v = 29.8 ± 0.5 km/s, where the
error takes into account the spread between the maximum
and minimum along the elliptical orbit. The angle θv be-
tween the reconstructed direction of the muon events and
the Earth’s velocity vector at the time the event was de-
tected was evaluated accounting for the experimental point
spread function. The expected solar dipole distribution, in-
cluding the 68% spread in the uncertainty of the expecta-
tion, is shown in Figure 2. This figure shows that the obser-
vation is consistent with the expectation in both amplitude
and phase.
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4 Interference between the Sidereal and So-
lar Anisotropy

4.1 The Sidereal Anisotropy Interference in the
Solar Dipole Anisotropy

A check applied to ensure that the solar dipole was well
understood was to compare the expected solar dipole dis-
tribution to the observed distribution over the three month
intervals (February-April, May-July, August-October, and
November-January) with approximately the same detec-
tor livetime. However, complications exist in this simple
dipole picture because if the data are not collected within
an integer number of full years, the solar dipole is expected
to be strongly distorted by the sidereal anisotropy [7]. This
spurious effect is expected because the sidereal reference
frame is defined where the celestial sky is fixed, while the
solar reference frame is defined where the Sun is fixed. It
takes about four fewer minutes to complete a sidereal day
than a solar day. Therefore, a static point in the sidereal
reference frame will move across the solar frame and re-
turn to the same position on the sky in one full year (this
is observed implicitly in Figure 2). Therefore, any static
sidereal distribution averages to zero in the solar reference
frame after one year but not over partial time intervals of
the year.
The points with their statistical errors in Figure 3 show the
α − αSun projection of the data collected in the time in-
terval between February and April. The black line shows
the solar dipole expectation from the motion of the Earth
around the Sun for the same time interval. This illustrates
the effect of the distortion by the sidereal anisotropy in the
solar dipole. The plot shows that the observation in the
solar reference frame is not in agreement with what is ex-
pected from the solar dipole alone and is strongly distorted
by the sidereal anisotropy.
To eliminate such contamination, the experimental side-
real anisotropy distribution was used to determine how it
would look like in solar reference frame. Specifically, a nu-
merical calculation was performed where, every 100µs, an
event was generated with a unique UTC time and with right
ascension from the all-year experimental sidereal distribu-
tion. The corresponding distribution in α − αSun was de-
termined for the February-April time period and is shown
in Figure 4. Once the sidereal anisotropy effect in the so-
lar reference frame is known, it is then subtracted from the
distribution measured in the solar reference frame.
Figure 3 shows the distorted cosmic ray distribution in the
solar reference frame, and Figure 5 shows the distorted dis-
tribution minus the sidereal interference. The plot shows
that the data, after correcting for the sidereal effect, is in
agreement with the solar dipole expectation for the period
from February to April. This effect was also estimated for
each of the next three time intervals (May-July, August-
October, and November-January) using the same method.
The data was found to be in agreement with the expectation
within statistical fluctuations.
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Figure 3: This plot shows the relative intensity of the one-
dimensional projection of right ascension with respect to
the Sun. The observed cosmic ray events in the period from
February to April are shown with statistical uncertainties in
the black crosses, and the black line is the relative intensity
of the expected solar dipole for the same time period.
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Figure 4: This plot shows the relative intensity of the side-
real anisotropy as it would appear in α − αSun projection
from February to April in absence of the solar dipole. The
error bars are the statistical uncertainties.

4.2 The Solar Dipole Anisotropy Interference in
the Sidereal Anisotropy

Similarly, the effect of the solar dipole interference in the
sidereal anisotropy was also checked. This check allows
for a better estimate of the systematic effect of the sea-
sonal variation dependence in the sidereal anisotropy of the
cosmic ray arrival direction [7]. If the relative intensity in
equatorial coordinates is measured over a full year, then the
observed sidereal anisotropy is devoid of any distortions by
the solar dipole as explained previously. However, similar
to the observation of the solar dipole in a quarter-year, we
observe (as shown in Figure 6) that the sidereal anisotropy
measured in the three month periods between February and
March (in gray points) deviates from the full dataset obser-
vation (in black line).
This deviation is smaller than the solar dipole’s distortion
and is consistent with what we would expect. If the same
sidereal-to-solar transformation procedure used previously
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Figure 5: This plot shows the relative intensity of the one-
dimensional projection in right ascension with respect to
the Sun. The observed cosmic ray events with their statisti-
cal uncertainties in the period from February to April minus
the propagated sidereal anisotropy in the solar reference
frame for same time period are shown in black crosses.
The black line is the relative intensity of the expected solar
dipole.
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Figure 6: This plot shows the relative intensity of the one-
dimensional projection of right ascension. The gray crosses
are the observed cosmic ray events in the sidereal reference
frame in the period from February to April. The black line
is the relative intensity of the same sidereal anisotropy ex-
cept over the full year. Both the full year and the quarter-
year projections are plotted with their statistical error bars.

is applied, but for the sidereal anisotropy, then the solar
dipole contribution from the sidereal observation is elim-
inated as shown in Figure 7. This effect was also cor-
rected for the next three time intervals (May-July, August-
October, and November-January) using the same method.
The corrected sidereal anisotropy over each of the time
intervals was also found to be in agreement with that ob-
served over a full year.

5 Conclusion

In this contribution, we presented the observation of the so-
lar dipole using the data collected by the 59-string configu-
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Figure 7: This plot shows the relative intensity of the one-
dimensional projection of right ascension. The gray crosses
are the observed cosmic ray events in the sidereal reference
frame in the period from February to April minus the prop-
agated solar anisotropy in the sidereal reference frame for
same time period. The black line is the relative intensity
of the same sidereal anisotropy except over the full year.
Both the full year and the quarter-year projections are plot-
ted with their statistical error bars.

ration of IceCube from May 2009 to May 2010. The solar
dipole effect is studied in one full year and in 3 months in-
tervals. The observed solar dipole in these time intervals
was found to be consistent with what is expected from the
motion of the Earth around the Sun in both amplitude and
phase. The solar dipole effect is a well understood mea-
surement that confirms, within statistical uncertainty, the
reliability of the large-scale sidereal cosmic ray anisotropy
observations.
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