Catching Neutrinos with an IceCube

Mathieu Labare (for the IceCube Collaboration)
Vrije Universiteit Brussel - IIHE

mlabare@icecube.wisc.edu

04 – 04 – 2011 , Neutrino-Gamma Workshop @ Marseille
IceCube Neutrino Observatory

IceTop
80 stations composed of 2 Cherenkov tanks with 2 DOMs sensors per tank.

IceCube
86 strings of DOMs
Completed December 14th 2010!

AMANDA
Shutdown in March 2009

DeepCore
8 strings of HQ-DOMs
Completed in February 2010.
IceCube Neutrino Observatory

The DeepCore extension

- **DeepCore**: 8 strings of HQ-DOMs
- **Low-Energy extension**
- Completed in February 2010.
IceCube Neutrino Observatory
Successive configurations

Season 04-05
First IceCube string deployed

Season 05-06 : IC-9

Season 06-07 : IC-22
- Cosmic Ray anisotropy
- Diffuse fluxes
- GRB observations

Season 07-08 : IC-40
- Moon Shadow
- Point Source search
- Diffuse fluxes (Prel.)
- GRB observations

Season 08-09 : IC-59
- GRB observations (Prel.)

Season 09-10 : IC-79

Season 10-11 : IC-86
IceCube is completed!
Signal in IceCube

Cherenkov radiation detected by optical sensors
Information: Time – Intensity – Position
► Energy and/or direction reconstruction

v_e with $E = 375$ TeV

v_μ with $E = 6$ TeV

v_τ with $E = 1$ PeV
Signal in IceCube

Cosmic

Atmospheric

\(\sim E^{-2} \)

\(\sim E^{-3.7} \)

M. Labare, Catching Neutrinos with an IceCube
IC-40 The Moon Shadow
Verification of the IceCube pointing accuracy

observed: 7.173×10^4 events
expected: 7.4×10^4 events
deficit: -2262 events
error: 285 events
significance: -7.9σ

G.W. Clark, 1957
IC-22 Cosmic Ray Anisotropy

June, 2007 - March, 2008

4.3 10^9 atm. μ \hspace{1cm} $<E> = 14$ TeV

Very first measurement for Southern Hemisphere

- Anisotropy up to 100 TeV
- Energy dependence

![Map of cosmic ray anisotropy](image.png)

Preliminary
IC-40 All sky Point Source Search

Northern sky: 14,121 ev. (atm-ν)

\[E^2 \frac{dN}{dE} \sim 2 - 200 \times 10^{-12} \text{ Tev cm}^{-2} \text{ s}^{-1} \]

Southern sky: 22,779 ev. (atm µ)

\[E^2 \frac{dN}{dE} \sim 3 - 700 \times 10^{-12} \text{ Tev cm}^{-2} \text{ s}^{-1} \]

Post-trial proba: 18%
IC-40 All sky Point Source Search

ArXiv:1012.2137 (To be published in ApJ.)

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Phi_{\nu_e}^{50}$</th>
<th>$\Phi_{\nu_{\mu,\tau}}^{50}$</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyg OB2</td>
<td>6.04</td>
<td>10.54</td>
<td>–</td>
</tr>
<tr>
<td>MGRO J2019+37</td>
<td>7.50</td>
<td>13.3</td>
<td>0.44</td>
</tr>
<tr>
<td>MGRO J1908+06</td>
<td>3.73</td>
<td>6.82</td>
<td>0.43</td>
</tr>
<tr>
<td>Cas A</td>
<td>9.04</td>
<td>15.92</td>
<td>–</td>
</tr>
<tr>
<td>IC443</td>
<td>3.80</td>
<td>6.62</td>
<td>–</td>
</tr>
<tr>
<td>Geminga</td>
<td>3.91</td>
<td>6.66</td>
<td>0.48</td>
</tr>
<tr>
<td>Crab Nebula</td>
<td>3.70</td>
<td>6.58</td>
<td>–</td>
</tr>
<tr>
<td>1ES 1559+650</td>
<td>10.74</td>
<td>19.18</td>
<td>–</td>
</tr>
<tr>
<td>1ES 2344+514</td>
<td>7.24</td>
<td>12.96</td>
<td>–</td>
</tr>
<tr>
<td>3C273</td>
<td>10.89</td>
<td>19.70</td>
<td>0.24</td>
</tr>
<tr>
<td>H 1426+428</td>
<td>6.14</td>
<td>10.94</td>
<td>–</td>
</tr>
<tr>
<td>BL Lac</td>
<td>10.80</td>
<td>18.70</td>
<td>0.25</td>
</tr>
<tr>
<td>Mrk 501</td>
<td>8.11</td>
<td>14.14</td>
<td>0.41</td>
</tr>
<tr>
<td>Mrk 421</td>
<td>11.71</td>
<td>20.14</td>
<td>0.15</td>
</tr>
<tr>
<td>W Comae</td>
<td>4.46</td>
<td>8.06</td>
<td>–</td>
</tr>
<tr>
<td>1ES 0229+200</td>
<td>6.80</td>
<td>12.96</td>
<td>0.19</td>
</tr>
<tr>
<td>M87</td>
<td>3.42</td>
<td>5.98</td>
<td>–</td>
</tr>
<tr>
<td>S5 0716+71</td>
<td>13.28</td>
<td>23.56</td>
<td>–</td>
</tr>
<tr>
<td>M82</td>
<td>19.14</td>
<td>32.84</td>
<td>0.4</td>
</tr>
<tr>
<td>3C 123.0</td>
<td>5.59</td>
<td>10.66</td>
<td>0.44</td>
</tr>
<tr>
<td>3C 454.3</td>
<td>3.42</td>
<td>5.92</td>
<td>–</td>
</tr>
<tr>
<td>4C 38.41</td>
<td>6.77</td>
<td>11.86</td>
<td>0.48</td>
</tr>
<tr>
<td>PKS 0235+164</td>
<td>6.77</td>
<td>11.62</td>
<td>0.15</td>
</tr>
<tr>
<td>PKS 0528+134</td>
<td>3.63</td>
<td>6.72</td>
<td>–</td>
</tr>
<tr>
<td>PKS 1502+106</td>
<td>3.26</td>
<td>5.78</td>
<td>–</td>
</tr>
<tr>
<td>3C 273</td>
<td>3.61</td>
<td>6.54</td>
<td>–</td>
</tr>
<tr>
<td>NGC 1275</td>
<td>6.04</td>
<td>10.54</td>
<td>–</td>
</tr>
<tr>
<td>Cyg A</td>
<td>7.84</td>
<td>13.44</td>
<td>0.46</td>
</tr>
<tr>
<td>IC-22 maximum</td>
<td>3.26</td>
<td>5.86</td>
<td>–</td>
</tr>
<tr>
<td>Sgr A*</td>
<td>80.56</td>
<td>139.26</td>
<td>0.41</td>
</tr>
<tr>
<td>PKS 0527+441</td>
<td>113.90</td>
<td>201.82</td>
<td>–</td>
</tr>
<tr>
<td>Cen A</td>
<td>109.51</td>
<td>191.56</td>
<td>–</td>
</tr>
<tr>
<td>PKS 1454-354</td>
<td>92.56</td>
<td>156.74</td>
<td>–</td>
</tr>
<tr>
<td>PKS 2155-304</td>
<td>105.41</td>
<td>182.90</td>
<td>0.28</td>
</tr>
<tr>
<td>PKS 1622-297</td>
<td>152.28</td>
<td>263.86</td>
<td>0.048</td>
</tr>
<tr>
<td>QSO 1730-130</td>
<td>24.83</td>
<td>43.30</td>
<td>–</td>
</tr>
<tr>
<td>PKS 1406-076</td>
<td>16.04</td>
<td>28.72</td>
<td>0.42</td>
</tr>
<tr>
<td>QSO 2022-077</td>
<td>12.18</td>
<td>21.78</td>
<td>–</td>
</tr>
<tr>
<td>3C279</td>
<td>11.94</td>
<td>21.36</td>
<td>0.33</td>
</tr>
</tbody>
</table>

M. Labare, Catching Neutrinos with an IceCube
IC-22 (IC-40) Astroph. ν diffuse flux

IC-22: 333.3 days lifetime
IC-40: 375.5 days livetime
IC-40(IC-59) : Search for GRB ν signal

From April 5, 2008 till May 20, 2009
129 GRBs (GCN) \rightarrow 117 GRBs

Model-dependant: Unbinned LLH
Direction – arrival time – muon energy
No event observed (2.99 expected)

Model-independant: time window search
[-10s ; +10 s] \rightarrow [-1 day ; +1 day]
No candidate event in $\pm 2248s$ (4.2 expected)
IC-22 : Constraint on HE ν from SN2008D

A&A, n.15770

January, 9 2008
SWIFT X-Ray flash detection
09h09m30.70s ra ; 33°09’19,1” decl.

Soft jet model
massive star collapse \rightarrow neutron star or B.H.
$\Gamma_b \sim 1 – 10$ \hspace{1cm} $\theta \sim 5° - 50°$ \hspace{1cm} $E_j \sim 3 – 6 \times 10^{51}$ erg

IC-22 : 275,72 days
Time range : [-9.5h ; +1.8h]
Bg rate : 0.03 Hz \hspace{1cm} 0.26 signal ev. expected
Summary

IceCube is completed after 7 years of deployment!
► 86 strings with more than 5000 sensors for the biggest neutrino telescope in full activity.
► **DeepCore** extension: 8 densely instrumented region lowering the energy threshold @ 10 GeV

Data has been taken during construction phase
► 1st observation of CR anisotropy in the Southern Sky (IC-22)
► Limits for Point Source (IC-40)
 ● NS: ~ 2 – 200 \(10^{-12}\) Tev cm\(^{-2}\) s\(^{-1}\)
 ● SS: ~ 3 – 700 \(10^{-12}\) Tev cm\(^{-2}\) s\(^{-1}\)
► Limits for Atm. Neutrino diffuse flux (IC-22/IC-40)
 ● We're under the WB limit !!
► Search for GRB signal (IC-22/IC-40/IC-59)
 ● No event observed
 ● Constraints on soft jet models
 ● Optical Follow-up with SWIFT, Fermi, ROTSE,...
Summary

Additional topics:
- DarkMatter
- Exotic particles
- Electronic cascades
- Tau physics

Additional detectors for new channels:
- SPATSE
- Antarctic Radia Array (ARA) will start soon.

Analyses with partially built detector have been successful

The full km³-sized detector will provide an important increase in sensitivity for future analyses

NEW DISCOVERIES?
Detector characteristics (Back-up)
Searches for Dark Matter (Back-up)

Indirect detection of ν from DM annihilation

Galactic Halo observation

ArXiv: 1101.3349v1